A gas cluster ion beam (GCIB) source, consisting of CO clusters and operating with kinetic energies of up to 60 keV, has been developed for the high resolution and high sensitivity imaging of intact biomolecules. The CO molecule is an excellent molecule to employ in a GCIB source due to its relative stability and improved focusing capabilities, especially when compared to the conventionally employed Ar cluster source. Here we report on experiments aimed to examine the behavior of CO clusters as they impact a surface under a variety of conditions.
View Article and Find Full Text PDFMolecular dynamics (MD) simulations continue to make important contributions to understanding chemical and physical processes. Concomitant with the growth of MD simulations is the need to have interaction potentials that both represent the chemistry of the system and are computationally efficient. We propose a modification to the ReaxFF potential for carbon and hydrogen that eliminates the time-consuming charge equilibration, eliminates the acknowledged flaws of the electronegativity equalization method, includes an expanded training set for condensed phases, has a repulsive wall for simulations of energetic particle bombardment, and is compatible with the LAMMPS code.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
September 2016
Molecular dynamics computer simulations are used to model kiloelectronvolt cluster bombardment of pure hydrocarbon [polyethylene (PE) and polystyrene (PS)] and oxygen-containing [paraformaldehyde (PFA) and polylactic acid (PLA)] polymers by 20 keV C60 projectiles at a 45° impact angle to investigate the chemical effect of oxygen in the substrate material on the sputtering process. The simulations demonstrate that the presence of oxygen enhances the formation of small molecules such as carbon monoxide, carbon dioxide, water, and various molecules containing C═O double bonds. The explanation for the enhanced small molecule formation is the stability of carbon and oxygen multiple bonds relative to multiple bonds with only carbon atoms.
View Article and Find Full Text PDFUniversal descriptions are appealing because they simplify the description of different (but similar) physical systems, allow the determination of general properties, and have practical applications. Recently, the concept of universality has been applied to the dependence of the sputtering (ejection) yield due to energetic cluster bombardment versus the energy of the incident cluster. It was observed that the spread in data points can be reduced if the yield Y and initial projectile cluster kinetic energy E are expressed in quantities scaled by the number of cluster atoms n, that is, Y/n versus E/n.
View Article and Find Full Text PDFBeams of single C(+) ions are used for the incorporation of Si in the synthesis of thin films of SiC, which have a wide range of technological applications. We present a theoretical investigation of the use of C60 cluster beams to produce thin films of SiC on a Si substrate, which demonstrates that there are potential advantages to using C60(+) cluster ion beams over C(+) single ion beams. Molecular dynamics simulations of the multi-impact bombardment of Si with 20 keV normal incident C60 projectiles are performed to study the buildup of carbon and the formation of a region of Si-C mixing up to a fluence of 1.
View Article and Find Full Text PDFMolecular depth profiling of organic thin films by erosion with energetic cluster ion beams is a unique aspect of secondary ion mass spectrometry (SIMS) experiments. Although depth profiles of complex multilayer organic structures can be acquired with little damage accumulation and with depth resolution of <10 nm using either C60(+) or Arx(+) with x = 500-5000, hybrid materials consisting of both organic and inorganic layers often yield poor results. To unravel the factors that lead to this difficulty, we developed a model system composed of a thin gold layer of 1.
View Article and Find Full Text PDFCluster bombardments of 15 keV C(60) on metal-organic interfaces composed of silver atoms and octatetraene molecules were modeled using molecular dynamics computer simulations. Dynamics revealed by the simulations include the formation of holes in the metal overlayers from which underlying organic molecules are sputtered predominantly by a rapid jetlike motion and the implantation of metal atoms and clusters in the underlying organic solid. Both of these processes negatively affect the information depth for cluster bombardment of metal-organic interfaces; therefore, the simulations presented here give a clear picture of the issues associated with depth profiling through metal-organic interfaces.
View Article and Find Full Text PDFRecent experimental measurements and calculations performed by molecular dynamics computer simulations indicate, for highly energetic C primary ions bombarding molecular solids, the emission of intact molecules is unique. An energy- and angle-resolved neutral mass spectrometer coupled with laser photoionization techniques was used to measure the polar angle distribution of neutral benzo[a]pyrene molecules desorbed by 20-keV [Formula: see text] primary ions and observed to peak at off-normal angles integrated over all possible emission energies. Similarly, computer simulations of 20-keV C projectiles bombarding a coarse-grained benzene system resulted in calculations of nearly identical polar angle distributions.
View Article and Find Full Text PDFThe analytical steady-state statistical sputtering model (SS-SSM) is utilized to interpret molecular dynamics (MD) simulations of depth profiling of Ag solids with keV cluster beams of C(60) and Au(3) under different incident energy and angle conditions. Specifically, the results of the MD simulations provide the input to the SS-SSM and the result is a depth profile of a delta layer. It has been found that the rms roughness of each system correlates with the total displacement yield, a new quantity introduced in this study that follows naturally from the SS-SSM.
View Article and Find Full Text PDFThe angular distribution of intact organic molecules desorbed by energetic C(60) primary ions was probed both experimentally and with molecular dynamics computer simulations. For benzo[a]pyrene, the angular distribution of intact molecules is observed to peak at off-normal angles. Molecular dynamics computer simulations on a similar system show the mechanism of desorption involves fast deposition of energy followed by fluid-flow and effusive-type emission of intact molecules.
View Article and Find Full Text PDFThe present theoretical study explores the interaction of various energetic molecular projectiles and clusters with a model polymeric surface, with direct implications for surface analysis by mass spectrometry. The projectile sizes (up to 23 kDa) are intermediate between the polyatomic ions (SF(5), C(60)) used in secondary ion mass spectrometry and the large organic microdroplets generated, for example, in desorption electrospray ionization. The target is a model of amorphous polyethylene, already used in a previous study [Delcorte, A.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
April 2009
Coarse-grained molecular dynamics computer simulations are applied to investigate fundamental processes induced by an impact of keV C(60) projectile at an organic overlayer composed of long, well-organized linear molecules. The energy transfer pathways, sputtering yields, and the damage induced in the irradiated system, represented by a Langmuir-Blodgett (LB) multilayers composed from molecules of bariated arachidic acid, are investigated as a function of the kinetic energy and impact angle of the projectile and the thickness of the organic system. In particular, the unique challenges of depth profiling through a LB film vs.
View Article and Find Full Text PDFThis article reviews the new physics and new applications of secondary ion mass spectrometry using cluster ion probes. These probes, particularly C(60), exhibit enhanced molecular desorption with improved sensitivity owing to the unique nature of the energy-deposition process. In addition, these projectiles are capable of eroding molecular solids while retaining the molecular specificity of mass spectrometry.
View Article and Find Full Text PDFA newly developed Monte Carlo (MC) algorithm designed to study the complex interplay of dissolution and precipitation reactions on mineral surface is presented. This algorithm utilizes existing advanced reactive and configurational-biased MC techniques with new protocols specific for mineral-water interfaces. This time-independent methodology is especially advantageous for studying the kinetically slow quartz-water dissolution process.
View Article and Find Full Text PDFRecent direct simulation Monte Carlo (DSMC) simulations of homogeneous condensation in free expansion water plumes [Z. Li, J. Zhong, D.
View Article and Find Full Text PDFThe early stages of C(60) bombardment of octane and octatetraene crystals are modeled using molecular dynamics simulations with incident energies of 5-20 keV. Using the AIREBO potential, which allows for chemical reactions in hydrocarbon molecules, we are able to investigate how the projectile energy is partitioned into changes in potential and kinetic energy as well as how much energy flows into reacted molecules and internal energy. Several animations have been included to illustrate the bombardment process.
View Article and Find Full Text PDFThe reactions of aluminosilicate clusters with water are investigated using ab initio calculations. There are several reaction sites on a mineral surface, and, in the case of aluminosilicates, the dissolution chemistry is dictated by chemically distinct surface termination sites: Al and Si. Environmental factors such as pH determine the protonation state and configuration around these terminal sites.
View Article and Find Full Text PDFMolecular dynamics simulations are used to elucidate mechanisms of ablation in dopant-polymer systems. In one set of simulations, a uniform distribution of thermal absorbers are added to a polymethyl methacrylate substrate and are excited. Chemical decomposition occurs in the regions near the absorbers.
View Article and Find Full Text PDFCluster bombardment of a molecular solid, benzene, is modeled using molecular dynamics simulations in order to investigate the effect of projectile cluster size and incident energy on the resulting yield. Using the mesoscale energy deposition footprint (MEDF) model, we are able to model large projectiles with incident energies from 5 to 140 keV and predict trends in ejection yield. The highest ejection yield at 5 keV was observed at C 20 and C 60, but shifts toward larger clusters for higher energies.
View Article and Find Full Text PDF[Figure: see text]. Laser ablation harnesses photon energy to remove material from a surface. Although applications such as laser-assisted in situ keratomileusis (LASIK) surgery, lithography, and nanoscale device fabrication take advantage of this process, a better understanding the underlying mechanism of ablation in polymeric materials remains much sought after.
View Article and Find Full Text PDFMolecular dynamics simulations are performed to model C60 and Au3 bombardment of a molecular solid, benzene, in order to understand the energy deposition placement as a function of incident kinetic energy and incident angle. Full simulations are performed for 5 keV projectiles, and the yields are calculated. For higher energies, 20 and 40 keV, the mesoscale energy deposition footprint model is employed to predict trends in yield.
View Article and Find Full Text PDF