Publications by authors named "BERTRAND L"

Compelling evidence suggests that deoxycytidine kinase (dCK), a key enzyme in the salvage of deoxyribonucleosides and in the activation of clinically relevant nucleoside analogues, can be regulated by reversible phosphorylation. In this study, we show that dCK overexpressed in HEK-293T cells was labelled after incubation of the cells with [32P]orthophosphate. Tandem mass spectrometry allowed the identification of 4 in vivo phosphorylation sites, Thr3, Ser11, Ser15, and Ser74.

View Article and Find Full Text PDF

As a result of the growing recognition of Enterobacter sakazakii as an emergent pathogen, the International Dairy Federation (IDF) and the International Organization for Standardization (ISO) have standardized a reference method for the detection of E. sakazakii in milk powder products and powdered infant food formulas (IFF). The objectives of this study were to assess the applicability of the ISO-IDF draft standard, and to compare several chromogenic selective media for E.

View Article and Find Full Text PDF

Myofibrillar protein loss occurring in catabolic situations is considered to be mediated by the release of proinflammatory cytokines and associated with a decrease in circulating and muscle levels of insulin-like growth factor I (IGF-I). In this paper, we investigated whether the C(2)C(12) myotube atrophy caused in vitro by TNF-alpha/IFN-gamma cytokines might be reversed by exogenous IGF-I. Our results showed that, despite the presence of TNF-alpha/IFN-gamma, IGF-I retained its full ability to induce the phosphorylation of Akt, Foxo3a, and GSK-3beta (respectively, 16-fold, 9-fold, and 2-fold) together with a decrease in atrogin-1 mRNA (-39%, P < 0.

View Article and Find Full Text PDF

AMP-activated protein kinase (AMPK) is a major sensor and regulator of the energetic state of the cell. Little is known about the specific role of AMPKalpha(2), the major AMPK isoform in the heart, in response to global ischemia. We used AMPKalpha(2)-knockout (AMPKalpha(2)(-/-)) mice to evaluate the consequences of AMPKalpha(2) deletion during normoxia and ischemia, with glucose as the sole substrate.

View Article and Find Full Text PDF

A wortmannin-sensitive and insulin-stimulated protein kinase (WISK) that phosphorylates and activates heart 6-phosphofructo-2-kinase (PFK-2) was purified from serum-fed HeLa cells and found to contain protein kinase Czeta (PKCzeta). Both WISK and recombinant PKCzeta were inhibited by a pseudo-substrate peptide inhibitor of PKCzeta. WISK and PKCzeta phosphorylated and activated recombinant heart PFK-2 by increasing its Vmax.

View Article and Find Full Text PDF

Earlier crystallographic and spectroscopic studies had shown that horse spleen apoferritin was capable of removing the metal ion from hemin (Fe(III)-protoporphyrin IX) [G. Précigoux, J. Yariv, B.

View Article and Find Full Text PDF

It is now becoming evident that the liver has an important role in the control of whole body metabolism of energy nutrients. In this review, we focus on recent findings showing that AMP-activated protein kinase (AMPK) plays a major role in the control of hepatic metabolism. AMPK integrates nutritional and hormonal signals to promote energy balance by switching on catabolic pathways and switching off ATP-consuming pathways, both by short-term effects on phosphorylation of regulatory proteins and by long-term effects on gene expression.

View Article and Find Full Text PDF

The 5' AMP-activated protein kinase (AMPK) is a sensor of cellular energy homeostasis well conserved in all eukaryotic cells. AMPK is activated by rising AMP and falling ATP, either by inhibiting ATP production or by accelerating ATP consumption, by a complex mechanism that results in an ultrasensitive response. AMPK is a heterotrimeric enzyme complex consisting of a catalytic subunit alpha and two regulatory subunits beta and gamma.

View Article and Find Full Text PDF
Article Synopsis
  • AMPK plays a crucial role in regulating glucose uptake and glycolysis in muscle, but its function in the liver is less understood, particularly regarding glucokinase.
  • Various agents like AICAR, metformin, and oligomycin can activate AMPK in rat liver cells, but instead of directly affecting glucokinase, they inhibit glucose phosphorylation and glycolysis through other mechanisms.
  • The inhibition persists even in engineered mice lacking AMPK, indicating the effect is not mediated by this enzyme, and it may be linked to reduced ATP levels affecting glucokinase's movement within the cell.
View Article and Find Full Text PDF

Diabetic hearts are known to be more susceptible to ischemic disease. Biguanides, like metformin, are known antidiabetic drugs that lower blood glucose concentrations by decreasing hepatic glucose production and increasing glucose disposal in muscle. Part of these metabolic effects is thought to be mediated by the activation of AMP-activated protein kinase (AMPK).

View Article and Find Full Text PDF

Ischemic preconditioning confers powerful protection against myocardial infarction through pre-emptive activation of survival signaling pathways, but it remains difficult to apply to patients with ischemic heart disease, and its effects are transient. Promoting a sustained activation of preconditioning mechanisms in vivo would represent a novel approach of cardioprotection. We tested the role of the protein H11 kinase (H11K), which accumulates by 4- to 6-fold in myocardium of patients with chronic ischemic heart disease and in experimental models of ischemia.

View Article and Find Full Text PDF

Deoxycytidine kinase (dCK) catalyzes the rate-limiting step of the deoxyribonucleoside salvage pathway in mammalian cells and plays a key role in the activation of numerous nucleoside analogues used in anti-cancer and antiviral chemotherapy. Although compelling evidence indicated that dCK activity might be regulated by phosphorylation/dephosphorylation, direct demonstration was lacking. Here we showed that dCK overexpressed in HEK 293T cells was labeled after incubating the cells with [32P]orthophosphate.

View Article and Find Full Text PDF

Recent studies indicate that the LKB1 is a key regulator of the AMP-activated protein kinase (AMPK), which plays a crucial role in protecting cardiac muscle from damage during ischemia. We have employed mice that lack LKB1 in cardiac and skeletal muscle and studied how this affected the activity of cardiac AMPKalpha1/alpha2 under normoxic, ischemic, and anoxic conditions. In the heart lacking cardiac muscle LKB1, the basal activity of AMPKalpha2 was vastly reduced and not increased by ischemia or anoxia.

View Article and Find Full Text PDF

Aims: Ultrasound (US)-targeted microbubble destruction (UTMD) is a promising method for delivering genetic material to the heart. The aim of this study was: (i) to test whether colloid nanoparticles can be delivered to the rat myocardium using UTMD; and (ii) to determine whether tissue damage and contractile dysfunction occurs in hearts exposed to UTMD in vivo.

Methods And Results: Hearts from anaesthetized rats were exposed to perfluorocarbon-enhanced sonicated dextrose albumin (PESDA) (at two different microbubble concentrations) and US at peak pressures of 0.

View Article and Find Full Text PDF

Fructose 2,6-bisphosphate is a potent allosteric activator of trypanosomatid pyruvate kinase and thus represents an important regulator of energy metabolism in these protozoan parasites. A 6-phosphofructo-2-kinase, responsible for the synthesis of this regulator, was highly purified from the bloodstream form of Trypanosoma brucei and kinetically characterized. By searching trypanosomatid genome databases, four genes encoding proteins homologous to the mammalian bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2) were found for both T.

View Article and Find Full Text PDF

Recent studies indicate that deoxycytidine kinase (dCK), which activates various nucleoside analogues used in antileukemic therapy, can be regulated by post-translational modification, most probably through reversible phosphorylation. To further unravel its regulation, dCK was overexpressed in HEK-293 cells as a His-tag fusion protein. Western blot analysis showed that purified overexpressed dCK appears as doublet protein bands.

View Article and Find Full Text PDF

A truncated form of the regulatory subunit of the protein kinase CK2beta (residues 1-178) has been crystallized in the presence of a fragment of the cyclin-dependent kinase inhibitor p21WAF1 (residues 46-65) and the structure solved at 2.9 A resolution by molecular replacement. The core of the CK2beta dimer shows a high structural similarity with that identified in previous structural analyses of the dimer and the holoenzyme.

View Article and Find Full Text PDF

An algorithm for nonlinear registration of an elastic body is developed. Surfaces (outlines) of known anatomic structures are used to align all other (internal) points. The deformation field is represented with a multiresolution wavelet expansion and is modeled by the partial differential equations of linear elasticity.

View Article and Find Full Text PDF

Deoxycytidine kinase (dCK) is a key enzyme in the deoxynucleoside salvage pathway and in the activation of numerous nucleoside analogues used in cancer and antiviral chemotherapy. Recent studies indicate that dCK activity might be regulated through reversible phosphorylation. Here, we report the effects of a large panel of protein kinase inhibitors on dCK activity in the B-leukemia cell line EHEB, both in basal conditions and in the presence of the nucleoside analogue 2-chloro-2'-deoxyadenosine (CdA) which induces activation of dCK.

View Article and Find Full Text PDF

Fru-2,6-P2 (fructose 2,6-bisphosphate) is a signal molecule that controls glycolysis. Since its discovery more than 20 years ago, inroads have been made towards the understanding of the structure-function relationships in PFK-2 (6-phosphofructo-2-kinase)/FBPase-2 (fructose-2,6-bisphosphatase), the homodimeric bifunctional enzyme that catalyses the synthesis and degradation of Fru-2,6-P2. The FBPase-2 domain of the enzyme subunit bears sequence, mechanistic and structural similarity to the histidine phosphatase family of enzymes.

View Article and Find Full Text PDF

In recent years, there has been an explosion in the number of tools and techniques available to researchers interested in exploring the genetic basis of all aspects of central nervous system (CNS) development and function. Here, we exploit a powerful new reductionist approach to explore the genetic basis of the very significant structural and molecular differences between the brains of different strains of mice, called either complex trait or quantitative trait loci (QTL) analysis. Our specific focus has been to provide universal access over the web to tools for the genetic dissection of complex traits of the CNS--tools that allow researchers to map genes that modulate phenotypes at a variety of levels ranging from the molecular all the way to the anatomy of the entire brain.

View Article and Find Full Text PDF

Visualization software for three dimensional digital brain atlases present many challenges in design and implementation. These challenges include the design of an effective human interface, management of large data sets, display speed when slicing the data set for viewing/browsing, and the display of delineated volumes of interest (VOI). We present a software design, implementation and storage architecture that addresses these issues, allowing the user to navigate through a reconstructed volume quickly and smoothly, with an easy-to-use human interface.

View Article and Find Full Text PDF

We employed Cre/loxP technology to generate mPDK1(-/-) mice, which lack PDK1 in cardiac muscle. Insulin did not activate PKB and S6K, nor did it stimulate 6-phosphofructo-2-kinase and production of fructose 2,6-bisphosphate, in the hearts of mPDK1(-/-) mice, consistent with PDK1 mediating these processes. All mPDK1(-/-) mice died suddenly between 5 and 11 weeks of age.

View Article and Find Full Text PDF

Developments in microfocus synchrotron techniques have led to new results regarding the long-term alteration of archaeological samples of biological origin. Here, ancient hair samples from two Egyptian mummies have been analyzed using a conjunction of structural and elemental synchrotron methods. In this favored context of conservation, structural analysis revealed a remarkable preservation of keratin supramolecular organization at any observed length scale.

View Article and Find Full Text PDF

This article draws on data from a 1999 survey on youth victimization, crime and delinquency in Alberta conducted by the Canadian Research Institute for Law and the Family in collaboration with researchers from the University of Alberta. The survey included 2,001 youth attending Grades 7 to 12 in public and Catholic schools in selected urban and rural areas in the province. Analyses focus on self-reported past-year delinquency.

View Article and Find Full Text PDF