Publications by authors named "BE Bonner"

Background: Opioid use is a public health crisis in the United States and an area of increased focus in orthopaedic surgery. The aim of this study is to investigate whether preoperative opioid use had any effect on patient-reported outcome measures (PROMs) before and after total hip arthroplasty (THA).

Methods: A total of 389 patients with THA with both preoperative and postoperative PROMs were reviewed: (1) 76 patients with preoperative opioid use (24%) and (2) 237 patients without preoperative opioid use (76%).

View Article and Find Full Text PDF

The contribution of B meson decays to nonphotonic electrons, which are mainly produced by the semileptonic decays of heavy-flavor mesons, in p + p collisions at √s=200  GeV has been measured using azimuthal correlations between nonphotonic electrons and hadrons. The extracted B decay contribution is approximately 50% at a transverse momentum of pT≥5  GeV/c. These measurements constrain the nuclear modification factor for electrons from B and D meson decays.

View Article and Find Full Text PDF

We report the first measurements of the kurtosis (κ), skewness (S), and variance (σ2) of net-proton multiplicity (Np-Np) distributions at midrapidity for Au+Au collisions at square root of s(NN)=19.6, 62.4, and 200 GeV corresponding to baryon chemical potentials (μB) between 200 and 20 MeV.

View Article and Find Full Text PDF

We report the first three-particle coincidence measurement in pseudorapidity (Δη) between a high transverse momentum (p⊥) trigger particle and two lower p⊥ associated particles within azimuth |Δϕ|<0.7 in square root of s(NN)=200 GeV d+Au and Au+Au collisions. Charge ordering properties are exploited to separate the jetlike component and the ridge (long range Δη correlation).

View Article and Find Full Text PDF

Parity-odd domains, corresponding to nontrivial topological solutions of the QCD vacuum, might be created during relativistic heavy-ion collisions. These domains are predicted to lead to charge separation of quarks along the system's orbital momentum axis. We investigate a three-particle azimuthal correlator which is a P even observable, but directly sensitive to the charge separation effect.

View Article and Find Full Text PDF

Nuclear collisions recreate conditions in the universe microseconds after the Big Bang. Only a very small fraction of the emitted fragments are light nuclei, but these states are of fundamental interest. We report the observation of antihypertritons--comprising an antiproton, an antineutron, and an antilambda hyperon--produced by colliding gold nuclei at high energy.

View Article and Find Full Text PDF

Forward-backward multiplicity correlation strengths have been measured with the STAR detector for Au + Au and p + p collisions at square root of s(NN) = 200 GeV. Strong short- and long-range correlations (LRC) are seen in central Au + Au collisions. The magnitude of these correlations decrease with decreasing centrality until only short-range correlations are observed in peripheral Au + Au collisions.

View Article and Find Full Text PDF

We report K/pi fluctuations from Au + Au collisions at sqrt[s(NN)]= 19.6, 62.4, 130, and 200 GeV using the STAR detector at the Relativistic Heavy Ion Collider.

View Article and Find Full Text PDF

The neutron elastic magnetic form factor was extracted from quasielastic electron scattering on deuterium over the range Q;{2}=1.0-4.8 GeV2 with the CLAS detector at Jefferson Lab.

View Article and Find Full Text PDF

In ultraperipheral relativistic heavy-ion collisions, a photon from the electromagnetic field of one nucleus can fluctuate to a quark-antiquark pair and scatter from the other nucleus, emerging as a rho{0}. The rho{0} production occurs in two well-separated (median impact parameters of 20 and 40 F for the cases considered here) nuclei, so the system forms a two-source interferometer. At low transverse momenta, the two amplitudes interfere destructively, suppressing rho{0} production.

View Article and Find Full Text PDF

A search for exotic mesons in the pi;{+}pi;{+}pi;{-} system photoproduced by the charge exchange reaction gammap-->pi;{+}pi;{+}pi;{-}(n) was carried out by the CLAS Collaboration at Jefferson Lab. A tagged-photon beam with energies in the 4.8 to 5.

View Article and Find Full Text PDF

Three-particle azimuthal correlation measurements with a high transverse momentum trigger particle are reported for pp, d+Au, and Au+Au collisions at sqrt[s_{NN}]=200 GeV by the STAR experiment. Dijet structures are observed in pp, d+Au and peripheral Au+Au collisions. An additional structure is observed in central Au+Au data, signaling conical emission of correlated charged hadrons.

View Article and Find Full Text PDF

We measure directed flow (v_{1}) for charged particles in Au+Au and Cu+Cu collisions at sqrt[s_{NN}]=200 and 62.4 GeV, as a function of pseudorapidity (eta), transverse momentum (p_{t}), and collision centrality, based on data from the STAR experiment. We find that the directed flow depends on the incident energy but, contrary to all available model implementations, not on the size of the colliding system at a given centrality.

View Article and Find Full Text PDF

We report precision measurements of the Feynman x (xF) dependence, and first measurements of the transverse momentum (pT) dependence, of transverse single-spin asymmetries for the production of pi0 mesons from polarized proton collisions at sqrt[s] = 200 GeV. The xF dependence of the results is in fair agreement with perturbative QCD model calculations that identify orbital motion of quarks and gluons within the proton as the origin of the spin effects. Results for the pT dependence at fixed xF are not consistent with these same perturbative QCD-based calculations.

View Article and Find Full Text PDF

We report a new STAR measurement of the longitudinal double-spin asymmetry A(LL) for inclusive jet production at midrapidity in polarized p + p collisions at a center-of-mass energy of sqrt[s]=200 GeV. The data, which cover jet transverse momenta 5 View Article and Find Full Text PDF

We report the first measurement of the opening angle distribution between pairs of jets produced in high-energy collisions of transversely polarized protons. The measurement probes (Sivers) correlations between the transverse spin orientation of a proton and the transverse momentum directions of its partons. With both beams polarized, the wide pseudorapidity (-1< or = eta < or = +2) coverage for jets permits separation of Sivers functions for the valence and sea regions.

View Article and Find Full Text PDF

We present first measurements of the phi-meson elliptic flow (v2(pT)) and high-statistics pT distributions for different centralities from radical sNN=200 GeV Au+Au collisions at RHIC. In minimum bias collisions the v2 of the phi meson is consistent with the trend observed for mesons. The ratio of the yields of the Omega to those of the phi as a function of transverse momentum is consistent with a model based on the recombination of thermal s quarks up to pT approximately 4 GeV/c, but disagrees at higher momenta.

View Article and Find Full Text PDF

The STAR collaboration at the BNL Relativistic Heavy-Ion Collider (RHIC) reports measurements of the inclusive yield of nonphotonic electrons, which arise dominantly from semileptonic decays of heavy flavor mesons, over a broad range of transverse momenta (1.2 View Article and Find Full Text PDF

We present the scaling properties of Lambda, Xi, and Omega in midrapidity Au+Au collisions at the Brookhaven National Laboratory Relativistic Heavy Ion Collider at sqrt[s_{NN}]=200 GeV. The yield of multistrange baryons per participant nucleon increases from peripheral to central collisions more rapidly than that of Lambda, indicating an increase of the strange-quark density of the matter produced. The strange phase-space occupancy factor gamma_{s} approaches unity for the most central collisions.

View Article and Find Full Text PDF

We report a measurement of the longitudinal double-spin asymmetry A(LL) and the differential cross section for inclusive midrapidity jet production in polarized proton collisions at square root of s = 200 GeV. The cross section data cover transverse momenta 5 < pT < 50 GeV/c and agree with next-to-leading order perturbative QCD evaluations. The A(LL) data cover 5 < pT < 17 GeV/c and disfavor at 98% C.

View Article and Find Full Text PDF

The STAR Collaboration at the Relativistic Heavy Ion Collider reports measurements of azimuthal correlations of high transverse momentum (pT) charged hadrons in Au+Au collisions at higher pT than reported previously. As (pT) is increased, a narrow, back-to-back peak emerges above the decreasing background, providing a clear dijet signal for all collision centralities studied. Using these correlations, we perform a systematic study of dijet production and suppression in nuclear collisions, providing new constraints on the mechanisms underlying partonic energy loss in dense matter.

View Article and Find Full Text PDF

Measurements of the production of forward pi0 mesons from p + p and d + Au collisions at square root sNN=200 GeV are reported. The p + p yield generally agrees with next-to-leading order perturbative QCD calculations. The d + Au yield per binary collision is suppressed as eta increases, decreasing to approximately 30% of the p + p yield at eta =4.

View Article and Find Full Text PDF

Transverse momentum spectra of pi+/-, p, and p up to 12 GeV/c at midrapidity in centrality selected Au + Au collisions at square root sNN=200 GeV are presented. In central Au + Au collisions, both pi +/- and p(p) show significant suppression with respect to binary scaling at pT approximately >4 GeV/c. Protons and antiprotons are less suppressed than pi+/-, in the range 1.

View Article and Find Full Text PDF