Surface-enhanced Raman spectroscopy (SERS) was used to detect and characterize polyatomic cations and molecules that were electrosprayed into the gas phase and soft-landed in vacuum on plasma-treated silver substrates. Organic dyes such as crystal violet and Rhodamine B, the nucleobase cytosine, and nucleosides cytidine and 2'-deoxycytidine were immobilized by soft landing on plasma-treated metal surfaces at kinetic energies ranging from near thermal to 200 eV. While enhancing Raman scattering 10(5)-10(6)-fold, the metal surface effectively quenches the fluorescence that does not interfere with the Raman spectra.
View Article and Find Full Text PDFDirect evidence for metabolism in a variety of frozen environments has pushed temperature limits for bacterial activity to increasingly lower temperatures, so far to -20 degrees C. To date, the metabolic activities of marine psychrophilic bacteria, important components of sea-ice communities, have not been studied in laboratory culture, not in ice and not below -12 degrees C. We measured [3H]-leucine incorporation into macromolecules (further fractionated biochemically) by the marine psychrophilic bacterium Colwellia psychrerythraea strain 34H over a range of anticipated activity-permissive temperatures, from +13 to -20 degrees C, including expected negative controls at -80 and -196 degrees C.
View Article and Find Full Text PDFWe have measured the light scattering intensity and homogeneous ice nucleation temperatures from water droplets containing 0-33 wt % ammonium sulfate. In these laboratory experiments, we used a free-fall freezing tube technique to determine the fraction of frozen droplets at a particular droplet temperature by measuring the depolarized light scattering intensity from the droplets in free-fall. Previously reported freezing temperatures for solution concentrations greater than 5 wt % display a larger spread than can be accounted for by the reported experimental errors.
View Article and Find Full Text PDFPsychro-active bacteria, important constituents of polar ecosystems, have a unique ability to remain active at temperatures below 0 degrees C, yet it is not known to what extent the composition of their outer cell surfaces aids in their low-temperature viability. In this study, aqueous suspensions of five strains of Arctic psychro-active marine bacteria (PAMB) (mostly sea-ice isolates), were characterized by surface-enhanced Raman spectroscopy (SERS) and compared with SERS spectra from E. coli and P.
View Article and Find Full Text PDF