Publications by authors named "BAUMLER A"

Article Synopsis
  • * Typhimurium invasion reduces the density of beneficial gut bacteria and leads to malabsorption of dietary amino acids, which affects nutrient availability in the large intestine.
  • * Specific amino acids like lysine and ornithine can help Typhimurium survive by restoring pH balance, allowing it to invade even when beneficial microbiota are present.
View Article and Find Full Text PDF

The gut microbiome, composed of the colonic microbiota and their host environment, is important for many aspects of human health. A gut microbiome imbalance (gut dysbiosis) is associated with major causes of human morbidity and mortality. Despite the central part our gut microbiome plays in health and disease, mechanisms that maintain homeostasis and properties that demarcate dysbiosis remain largely undefined.

View Article and Find Full Text PDF

This month, the United Nations (UN) General Assembly will convene its second High-Level Meeting on antimicrobial resistance, urging UN member states to take decisive action against this growing threat. The US Centers for Disease Control and Prevention (CDC) has released a list of the drug-resistant bacterial and fungal infections that pose the greatest concern to public health. Yet, despite increasing warnings from infectious disease experts, the public remains largely unaware of the true scale of the problem.

View Article and Find Full Text PDF

The gut microbiota prevents harmful microbes from entering the body, a function known as colonization resistance. The enteric pathogen Salmonella enterica serovar (S.) Typhimurium uses its virulence factors to break colonization resistance through unknown mechanisms.

View Article and Find Full Text PDF

Antibiotic treatment promotes the outgrowth of intestinal Candida albicans, but the mechanisms driving this fungal bloom remain incompletely understood. We identify oxygen as a resource required for post-antibiotic C. albicans expansion.

View Article and Find Full Text PDF
Article Synopsis
  • - Mitochondrial dysfunction in inflammatory bowel disease (IBD) leads to increased oxygen levels in the gut, fostering the growth of certain bacteria and disrupting the balance of the microbiome, which can harm metabolism and immunity.
  • - A novel compound called AuPhos enhances mitochondrial function in intestinal cells, reduces colitis symptoms, and restores a healthy gut microbiome in mice models, implying its potential benefits for IBD patients.
  • - The study utilized various experimental methods, including animal models and human tissue analyses, showing that AuPhos alters microbial composition and improves oxygen use in gut cells, indicating its role in correcting IBD-related metabolic issues.
View Article and Find Full Text PDF

Carbohydrate intolerance, commonly linked to the consumption of lactose, fructose, or sorbitol, affects up to 30% of the population in high-income countries. Although sorbitol intolerance is attributed to malabsorption, the underlying mechanism remains unresolved. Here, we show that a history of antibiotic exposure combined with high fat intake triggered long-lasting sorbitol intolerance in mice by reducing Clostridia abundance, which impaired microbial sorbitol catabolism.

View Article and Find Full Text PDF

The gut microbiota prevents infection by crowding out pathogens.

View Article and Find Full Text PDF

The gut microbiota plays a role in many human diseases, but high-throughput sequence analysis does not provide a straightforward path for defining healthy microbial communities. Therefore, understanding mechanisms that drive compositional changes during disease (gut dysbiosis) continues to be a central goal in microbiome research. Insights from the microbial pathogenesis field show that an ecological cause for gut dysbiosis is an increased availability of host-derived respiratory electron acceptors, which are dominant drivers of microbial community composition.

View Article and Find Full Text PDF

Antibiotic prophylaxis sets the stage for an intestinal bloom of , which can progress to invasive candidiasis in patients with hematologic malignancies. Commensal bacteria can reestablish microbiota-mediated colonization resistance after completion of antibiotic therapy, but they cannot engraft during antibiotic prophylaxis. Here we use a mouse model to provide a proof of concept for an alternative approach, which replaces commensal bacteria functionally with drugs to restore colonization resistance against .

View Article and Find Full Text PDF