Publications by authors named "BARRON N"

The Warburg effect, which describes the fermentation of glucose to lactate even in the presence of oxygen, is ubiquitous in proliferative mammalian cells, including cancer cells, but poses challenges for biopharmaceutical production as lactate accumulation inhibits cell growth and protein production. Previous efforts to eliminate lactate production in cells for bioprocessing have failed as lactate dehydrogenase is essential for cell growth. Here, we effectively eliminate lactate production in Chinese hamster ovary and in the human embryonic kidney cell line HEK293 by simultaneous knockout of lactate dehydrogenases and pyruvate dehydrogenase kinases, thereby removing a negative feedback loop that typically inhibits pyruvate conversion to acetyl-CoA.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small, noncoding RNAs of about 22 nucleotides in length and have proven to be useful targets for genetic modifications for desirable phenotypes in the biotech industry. The use of constitutively expressed "miRNA sponge" vectors in which multiple, tandem miRNA-binding sites containing transcripts are transcriptionally regulated by a constitutive promoter for downregulating the levels of endogenous microRNAs in Chinese hamster ovary (CHO) cells has shown to be more advantageous than using synthetic antisense oligonucleotides. The application of miRNA sponges in biotechnological processes, however, could be more effective, if the expression of miRNA sponges could be tuned.

View Article and Find Full Text PDF
Article Synopsis
  • * Using ribosome footprint profiling (Ribo-seq), researchers discovered new open reading frames (ORFs) and many short ORFs (sORFs) that may code for microproteins, which could impact the quality of antibody products.
  • * Analyzing eight commercial antibody products showed that microprotein impurities exist and their levels fluctuate depending on the growth phase and culture environment, highlighting the need for better resources to study translation regulation in CHO cells.
View Article and Find Full Text PDF

The Warburg effect is ubiquitous in proliferative mammalian cells, including cancer cells, but poses challenges for biopharmaceutical production, as lactate accumulation inhibits cell growth and protein production. Previous efforts to eliminate lactate production via knockout have failed in mammalian bioprocessing since lactate dehydrogenase has proven essential. However, here we eliminated the Warburg effect in Chinese hamster ovary (CHO) and HEK293 cells by simultaneously knocking out lactate dehydrogenase and regulators involved in a negative feedback loop that typically inhibits pyruvate conversion to acetyl-CoA.

View Article and Find Full Text PDF

Rotaviruses (RVs) are known to infect various avian and mammalian hosts, including swine. The most common RVs associated with infection in pigs are A, B, C and H (RVA-C; RVH). In this study we analysed rotavirus strains circulating on a porcine farm in the Western Cape province of South Africa over a two-year period.

View Article and Find Full Text PDF

MicroRNAs represent an interesting group of regulatory molecules with the unique ability of a single miRNA able to regulate the expression of potentially hundreds of target genes. In that regard, their utility has been demonstrated as a strategy to improve the cellular phenotypes important in the biomanufacturing of recombinant proteins. Common approaches to stably deplete miRNAs are the use of sponge decoy transcripts or shRNA inhibitors, both of which require the introduction and expression of extra genetic material in the cell.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) regulate approximately one-third of all human genes. The dysregulation of miRNAs has been implicated in the development of numerous human diseases, including cancers. In our investigation focusing on altering specific miRNA expression in human pancreatic cancer cells, we encountered an interesting finding.

View Article and Find Full Text PDF

Gene therapy holds great promise for the treatment of severe diseases, and adeno-associated virus (AAV) vectors have emerged as valuable tools in this field. However, challenges such as immunogenicity and high production costs complicate the commercial viability of AAV-based therapies. To overcome these barriers, improvements in production yield, driven through the availability of robust and sensitive characterization techniques that allow for the monitoring of critical quality attributes to deepen product and process understanding are crucial.

View Article and Find Full Text PDF

Chinese hamster ovary (CHO) cells have a long history in the biopharmaceutical industry and currently produce the vast majority of recombinant therapeutic proteins. A key step in controlling the process and product consistency is the development of a producer cell line derived from a single cell clone. However, it is recognized that genetic and phenotypic heterogeneity between individual cells in a clonal CHO population tends to arise over time.

View Article and Find Full Text PDF

The toolbox of modern antibody engineering allows the design of versatile novel functionalities exceeding nature's repertoire. Many bispecific antibodies comprise heterodimeric Fc portions recently validated through the approval of several bispecific biotherapeutics. While heterodimerization methodologies have been established for low-throughput large-scale production, few approaches exist to overcome the bottleneck of large combinatorial screening efforts that are essential for the identification of the best possible bispecific antibody.

View Article and Find Full Text PDF

Widespread antibiotic resistance in commensal bacteria creates a persistent challenge for human health. Resident drug-resistant microbes can prevent clinical interventions, colonize wounds post-surgery, pass resistance traits to pathogens or move to more harmful niches following routine interventions such as catheterization. Accelerating the removal of resistant bacteria or actively decolonizing particular lineages from hosts could therefore have a number of long-term benefits.

View Article and Find Full Text PDF

N -methyladenosine (m6A) is the most abundant internal modification on eukaryotic mRNA and has been implicated in a wide range of fundamental cellular processes. This modification is regulated and interpreted by a set of writer, eraser, and reader proteins. To date, there have been no reports on the potential of mRNA epigenetic regulators to influence recombinant protein expression in mammalian cells.

View Article and Find Full Text PDF

There is an increasing interest in the generation of Fc-fusion molecules to exploit the effector functions of Fc and the fusion partner, towards improving the therapeutic potential. The Fc-fusion molecules have unique structural and functional attributes that impart various advantages. However, the manufacturing of Fc-fusion molecules possesses certain challenges in the biopharmaceutical development.

View Article and Find Full Text PDF

Introduction: Access to surgical service is limited by provider availability and geographic barriers. Telemedicine ensures that patients can access medical care.

Objective: The objective is to describe our use of telemedicine in delivering vascular surgery services to remote locations before and during the COVID-19 pandemic.

View Article and Find Full Text PDF

Adeno-associated viral (AAV) vectors are widely used for gene therapy, providing treatment for diseases caused by absent or defective genes. Despite the success of gene therapy, AAV manufacturing is still challenging, with production yields being limited. With increased patient demand, improvements in host cell productivity through various engineering strategies will be necessary.

View Article and Find Full Text PDF

The circadian clock component NR1D1 (REVERBα) is considered a dominant regulator of lipid metabolism, with global deletion driving dysregulation of white adipose tissue (WAT) lipogenesis and obesity. However, a similar phenotype is not observed under adipocyte-selective deletion (), and transcriptional profiling demonstrates that, under basal conditions, direct targets of NR1D1 regulation are limited, and include the circadian clock and collagen dynamics. Under high-fat diet (HFD) feeding, mice do manifest profound obesity, yet without the accompanying WAT inflammation and fibrosis exhibited by controls.

View Article and Find Full Text PDF

Objectives: We used miRNA and proteomic profiling to understand intracellular pathways that contribute to high and low specific productivity (Qp) phenotypes in CHO clonally derived cell lines (CDCLs) from the same cell line generation project.

Results: Differentially expressed (DE) miRNAs were identified which are predicted to target several proteins associated with protein folding. MiR-200a was found to have a number of predicted targets associated with the unfolded protein response (UPR) which were shown to have decreased expression in high Qp CDCLs and have no detected change at the mRNA level.

View Article and Find Full Text PDF

Electrical activity in the heart exhibits 24-hour rhythmicity, and potentially fatal arrhythmias are more likely to occur at specific times of day. Here, we demonstrate that circadian clocks within the brain and heart set daily rhythms in sinoatrial (SA) and atrioventricular (AV) node activity, and impose a time-of-day dependent susceptibility to ventricular arrhythmia. Critically, the balance of circadian inputs from the autonomic nervous system and cardiomyocyte clock to the SA and AV nodes differ, and this renders the cardiac conduction system sensitive to decoupling during abrupt shifts in behavioural routine and sleep-wake timing.

View Article and Find Full Text PDF

A variety of mechanisms including transcriptional silencing, gene copy loss, and increased susceptibility to cellular stress have been associated with a sudden or gradual loss of monoclonal antibody (mAb) production in Chinese hamster ovary (CHO) cell lines. In this study, we utilized single-cell RNA-seq (scRNA-seq) to study a clonally derived CHO cell line that underwent production instability leading to a dramatic reduction of the levels of mAb produced. From the scRNA-seq data, we identified subclusters associated with variations in the mAb transgenes and observed that heavy chain gene expression was significantly lower than that of the light chain across the population.

View Article and Find Full Text PDF

The nuclear receptor REVERBα is a core component of the circadian clock and proposed to be a dominant regulator of hepatic lipid metabolism. Using antibody-independent ChIP-sequencing of REVERBα in mouse liver, we reveal a high-confidence cistrome and define direct target genes. REVERBα-binding sites are highly enriched for consensus RORE or RevDR2 motifs and overlap with corepressor complex binding.

View Article and Find Full Text PDF

Background: Hepatitis C virus (HCV) and the opioid epidemic disproportionately affect the Appalachian region. Geographic and financial barriers prevent access to specialty care. Interventions are needed to address the HCV-opioid syndemic in this region.

View Article and Find Full Text PDF

Objectives: This study aims to provide insights into the molecular mechanisms underlying adaptation of CHO-K1 cells to growth in glutamine-free media and potentially identifying critical signalling proteins and pathways involved in this phenotype.

Results: A CHO-K1 cell line adapted to growth in glutamine-free media was established using a straightforward one-step glutamine reduction strategy. The adapted cell line had a comparable phenotype to the parental cells in terms of cell growth and viability.

View Article and Find Full Text PDF

Our ability to study Chinese hamster ovary (CHO) cell biology has been revolutionised over the last decade following the development of next generation sequencing technology and publication of reference DNA sequences for CHO cells and the Chinese hamster. RNA sequencing has not only enabled the association of transcript expression with bioreactor conditions and desirable bioprocess phenotypes but played a key role in the characterisation of protein coding and small noncoding RNAs. The annotation of long noncoding RNAs, and therefore our understanding of their role in CHO cell biology, has been limited to date.

View Article and Find Full Text PDF

RNA sequencing (RNASeq) has been widely used to associate alterations in Chinese hamster ovary (CHO) cell gene expression with bioprocess phenotypes; however, alternative messenger RNA (mRNA) splicing, has thus far, received little attention. In this study, we utilized RNASeq for transcriptomic analysis of a monoclonal antibody (mAb) producing CHO K1 cell line subjected to a temperature shift. More than 2,465 instances of differential splicing were observed 24 hr after the reduction of cell culture temperature.

View Article and Find Full Text PDF