Background: Current systems for assessing protein quality such as the Digestible Indispensable Amino Acid Score correct apparent amino acid (AA) digestibility for basal endogenous protein losses (bEPL), ignoring the potential influence of the diet on these losses. However, the quantification of total endogenous protein losses (tEPL) poses a challenge.
Objectives: To evaluate different methods for quantifying tEPL and bEPL, and to assess their potential in discriminating between tEPL originating from bacteria and host.
Humans can be exposed to per- and polyfluoroalkyl substances (PFASs) via many exposure routes, including diet, which may lead to several adverse health effects. So far, little is known about PFAS transport across the human intestinal barrier. In the current study, we aimed to assess the transport of 5 PFASs (PFOS, PFOA, PFNA, PFHxS and HFPO-DA) in a human induced pluripotent stem cell (hiPSC)-derived intestinal epithelial cell (IEC) model.
View Article and Find Full Text PDFRegulatory approval of immune checkpoint inhibitors (ICIs) was based on results of large, randomized clinical trials, resulting in limited outcomes data in patient cohorts typically underrepresented in such trials. The objective of this study was to evaluate the efficacy and safety of ICIs in these unique patient cohorts. This is a multicenter, retrospective analysis of real-world data at six academic and community clinics in the United States from 1 January 2011 to 1 April 2018.
View Article and Find Full Text PDFThe integrity of the intestinal barrier is crucial for regulating the passage of pathogens and toxins, while facilitating nutrient absorption. The everted gut sac technique, an ex-vivo technique, can be used to study interventions on barrier function. This cost-effective approach utilizes relatively large gut segments to study specific intestinal regions.
View Article and Find Full Text PDF