Synthesis of biogenic membranes requires transbilayer movement of lipid-linked sugar molecules. This biological process, which is fundamental in prokaryotic cells, remains as yet not clearly understood. In order to obtain insights into the molecular basis of its mode of action, we analyzed the structure-function relationship between Lipid II, the important building block of the bacterial cell wall, and its inner membrane-localized transporter FtsW.
View Article and Find Full Text PDFThe limited therapeutic arsenal and the increase in reports of fungal resistance to multiple antifungal agents have made fungal infections a major therapeutic challenge. The polyene antibiotics are the only group of antifungal antibiotics that directly target the plasma membrane via a specific interaction with the main fungal sterol, ergosterol, often resulting in membrane permeabilization. In contrast to other polyene antibiotics that form pores in the membrane, the mode of action of natamycin has remained obscure but is not related to membrane permeabilization.
View Article and Find Full Text PDFPeptidoglycan synthesis and turnover in relation to cell growth and division has been studied by using a new labeling method. This method involves the incorporation of fluorescently labeled peptidoglycan precursors into the cell wall by means of the cell-wall recycling pathway. We show that Escherichia coli is able to import exogenous added murein tripeptide labeled with N-7-nitro-2,1,3-benzoxadiazol-4-yl (AeK-NBD) into the cytoplasm where it enters the peptidoglycan biosynthesis route, resulting in fluorescent labels specifically located in the cell wall.
View Article and Find Full Text PDFBacterial cell growth necessitates synthesis of peptidoglycan. Assembly of this major constituent of the bacterial cell wall is a multistep process starting in the cytoplasm and ending in the exterior cell surface. The intracellular part of the pathway results in the production of the membrane-anchored cell wall precursor, Lipid II.
View Article and Find Full Text PDFDilution of a fatty acid micellar solution at basic pH toward neutrality results in spontaneous formation of vesicles with a broad size distribution. However, when vesicles of a defined size are present before dilution, the size distribution of the newly formed vesicles is strongly biased toward that of the seed vesicles. This so-called matrix effect is believed to be a key feature of early life.
View Article and Find Full Text PDF