Publications by authors named "B de Foresta"

The present study mainly consists of a re-evaluation of the rate at which C12E8, a typical non-ionic detergent used for membrane studies, is able to dissociate from biological membranes, with sarcoplasmic reticulum membrane vesicles being used as an example. Utilizing a brominated derivative of C12E8 and now stopped-flow fluorescence instead of rapid filtration, we found that the rate of dissociation of this detergent from these membranes, merely perturbed with non-solubilizing concentrations of detergent, was significantly faster (t1/2 < 10 ms) than what had previously been determined (t1/2 ~300-400 ms) from experiments based on a rapid filtration protocol using 14C-labeled C12E8 and glass fiber filters (Binding of a non-ionic detergent to membranes: flip-flop rate and location on the bilayer, by Marc le Maire, Jesper Møller and Philippe Champeil, Biochemistry (1987) Vol 26, pages 4803-4810). We here pinpoint a methodological problem of the earlier rapid filtration experiments, and we suggest that the true overall dissociation rate of C12E8 is indeed much faster than previously thought.

View Article and Find Full Text PDF

In this paper, we describe molecular dynamics simulation results of the interactions between four peptides (mTM10, mTM16, TM17 and KTM17) with micelles of dodecylphosphocholine (DPC) and dodecyl-β-d-maltoside (DDM). These peptides represent three transmembrane fragments (TM10, 16 and 17) from the MSD1 and MSD2 membrane-spanning domains of an ABC membrane protein (hMRP1), which play roles in the protein functions. The peptide-micelle complex structures, including the tryptophan accessibility and dynamics were compared to circular dichroism and fluorescence studies obtained in water, trifluoroethanol and with micelles.

View Article and Find Full Text PDF

The human multidrug-resistance-associated protein 1 (hMRP1/ABCC1) belongs to the large ATP-binding cassette transporter superfamily. In normal tissues, hMRP1 is involved in tissue defense, whereas, in cancer cells, it is overproduced and contributes to resistance to chemotherapy. We previously investigated the folding properties of the predicted transmembrane fragments (TM) TM16, and TM17 from membrane-spanning domain 2 (MSD2).

View Article and Find Full Text PDF

The human multidrug resistance-associated protein 1 (hMRP1/ABCC1) belongs to the ATP-binding cassette transporter superfamily. Together with P-glycoprotein (ABCB1) and the breast cancer resistance protein (BCRP/ABCG2), hMRP1 confers resistance to a large number of structurally diverse drugs. The current topological model of hMRP1 includes two cytosolic nucleotide-binding domains and 17 putative transmembrane (TM) helices forming three membrane-spanning domains.

View Article and Find Full Text PDF

Caveolins (cav1-3) are essential membrane proteins found in caveolae. The caveolin scaffolding domain of cav-1 includes a short sequence containing a CRAC motif (V94TKYWFYR101) at its C-terminal end. To investigate the role of this motif in the caveolin-membrane interaction at the atomic level, we performed a detailed structural and dynamics characterization of a cav-1(V94-L102) nonapeptide encompassing this motif and including the first residue of cav-1 hydrophobic domain (L102), in dodecylmaltoside (DM) or dodecylphosphocholine (DPC) micelles, as membrane mimics.

View Article and Find Full Text PDF