Publications by authors named "B Zielinski"

Battery-powered sensor nodes encounter substantial energy constraints, especially in linear wireless sensor network (LWSN) applications like border surveillance and road, bridge, railway, powerline, and pipeline monitoring, where inaccessible locations exacerbate battery replacement challenges. Addressing these issues is crucial for extending a network's lifetime and reducing operational costs. This paper presents a comprehensive analysis of the factors affecting WSN energy consumption at the node and network levels, alongside effective energy management strategies for prolonging the WSN's lifetime.

View Article and Find Full Text PDF

Although olfaction is well known to guide animal behavior, the neural circuits underlying the motor responses elicited by olfactory inputs are poorly understood. In the sea lamprey, anatomical evidence shows that olfactory inputs project to the posterior tuberculum (PT), a structure containing dopaminergic (DA) neurons homologous to the mammalian ventral tegmental area and the substantia nigra pars compacta. Olfactory inputs travel directly from the medial olfactory bulb (medOB) or indirectly through the main olfactory bulb and the lateral pallium (LPal).

View Article and Find Full Text PDF

Little is known about the chemosensory system of gustation in sea lampreys, basal jawless vertebrates that feed voraciously on live prey. The objective of this study was to investigate taste bud distribution and chemosensory responses along the length of the pharynx in the sea lamprey. Scanning electron microscopy and immunocytochemistry revealed taste buds and associated axons at all six lateral pharyngeal locations between the seven pairs of internal gill pores.

View Article and Find Full Text PDF

Background: Autism spectrum disorder has been linked to a variety of organizational and developmental deviations in the brain. One such organizational difference involves hemispheric lateralization, which may be localized to language-relevant regions of the brain or distributed more broadly.

Methods: In the present study, we estimated brain hemispheric lateralization in autism based on each participant's unique functional neuroanatomy rather than relying on group-averaged data.

View Article and Find Full Text PDF