We have determined absolute charge transfer and fragmentation cross sections in He2++C60 collisions in the impact-energy range 0.1-250 keV by using a combined experimental and theoretical approach. We have found that the cross sections for the formation of He+ and He0 are comparable in magnitude, which cannot be explained by the sole contribution of pure single and double electron capture but also by contribution of transfer-ionization processes that are important even at low impact energies.
View Article and Find Full Text PDFA classical trajectory model has been used to predict total cross sections of single and double ionizing processes (including capture processes) for several ion-biological molecule collisional systems in the intermediate and high energy range. In this work, the systems studied are water, adenine or cytosine targets ionized by protons and alpha-particles with kinetic energies ranging from 25 keV amu(-1) to 3000 keV amu(-1). In our approach, we have combined several features of two classical methods namely the classical trajectory Monte Carlo (CTMC) and the classical over-barrier (COB) models.
View Article and Find Full Text PDFWe present a combined theoretical and experimental study of charge transfer and dissociation in collisions of slow Li31(2+) clusters with Cs atoms. We provide a direct quantitative comparison between theory and experiment and show that good agreement is found only when the exact experimental time of flight and initial cluster temperature are taken into account in the theoretical modeling. We demonstrate the validity of the simple physical image that consists in explaining evaporation as resulting from a collisional energy deposit due to cluster electronic excitation during charge transfer.
View Article and Find Full Text PDF