Publications by authors named "B Zaitchik"

Recent advances in clinical prediction for diarrhoeal aetiology in low- and middle-income countries have revealed that the addition of weather data to clinical data improves predictive performance. However, the optimal source of weather data remains unclear. We aim to compare the use of model estimated satellite- and ground-based observational data with weather station directly observed data for the prediction of aetiology of diarrhoea.

View Article and Find Full Text PDF

Six-times more carbon dioxide (CO) is removed each year by terrestrial photosynthesis than fossil fuel emissions. However, the carbon is mostly returned to the atmosphere by decomposition. We found a 3775-year-old ancient wood log buried 2 meters belowground that was preserved far beyond its expected lifetime.

View Article and Find Full Text PDF

Flash droughts, characterized by rapid onset and development, present significant challenges to agriculture and climate mitigation strategies. Operational drought monitoring systems, based on precipitation, soil moisture deficits, or temperature anomalies, often fall short in timely detection of these events, underscoring the need for customized identification and monitoring indices that account for the rapidity of flash drought onset. Recognizing this need, this paper introduces a global flash drought inventory from 1990 to 2021 derived using the Soil Moisture Volatility Index (SMVI).

View Article and Find Full Text PDF

Anthropogenic and climatic changes affect the water and energy cycles in High Mountain Asia (HMA), home to over two billion people and the largest reservoirs of freshwater outside the polar zone. Despite their significant importance for water management, consistent and reliable estimates of water storage and fluxes over the region are lacking because of the high uncertainties associated with the estimates of atmospheric conditions and human management. Here, we relied on multivariate data assimilation (MVDA) to provide estimates of energy and water storage and fluxes that reflect the processes occurring in the region such as greening and irrigation-driven groundwater depletion.

View Article and Find Full Text PDF

Malaria transmission is influenced by climate and land use/land cover change (LULC). This study examines the impact of climate and LULC on malaria risk in the Ecuadorian Amazon. Weekly malaria surveillance data between 2008 and 2019 from Ecuador's Ministry of Public Health were combined with hydrometeorological and LULC data.

View Article and Find Full Text PDF