Publications by authors named "B Wyman"

Activation of the mechanistic target of rapamycin (mTOR) is a key metabolic checkpoint of pro-inflammatory T-cell development that contributes to the pathogenesis of autoimmune diseases, such as systemic lupus erythematosus (SLE), however, the underlying mechanisms remain poorly understood. Here, we identify a functional role for Rab4A-directed endosome traffic in CD98 receptor recycling, mTOR activation, and accumulation of mitochondria that connect metabolic pathways with immune cell lineage development and lupus pathogenesis. Based on integrated analyses of gene expression, receptor traffic, and stable isotope tracing of metabolic pathways, constitutively active Rab4A exerts cell type-specific control over metabolic networks, dominantly impacting CD98-dependent kynurenine production, mTOR activation, mitochondrial electron transport and flux through the tricarboxylic acid cycle and thus expands CD4 and CD3CD4CD8 double-negative T cells over CD8 T cells, enhancing B cell activation, plasma cell development, antinuclear and antiphospholipid autoantibody production, and glomerulonephritis in lupus-prone mice.

View Article and Find Full Text PDF

Transaldolase deficiency predisposes to chronic liver disease progressing from cirrhosis to hepatocellular carcinoma (HCC). Transition from cirrhosis to hepatocarcinogenesis depends on mitochondrial oxidative stress, as controlled by cytosolic aldose metabolism through the pentose phosphate pathway (PPP). Progression to HCC is critically dependent on NADPH depletion and polyol buildup by aldose reductase (AR), while this enzyme protects from carbon trapping in the PPP and growth restriction in TAL deficiency.

View Article and Find Full Text PDF

Purpose Of Review: The cause of autoimmune diseases remains incompletely understood. Here, we highlight recent advances in the role of proinflammatory metabolic pathways in autoimmune disease, including treatment with antioxidants and mechanistic target of rapamycin (mTOR) inhibitors.

Recent Findings: Recent studies show that mTOR pathway activation, glucose utilization, mitochondrial oxidative phosphorylation, and antioxidant defenses play critical roles in the pathogenesis of autoimmune diseases, including rheumatoid arthritis, immune thrombocytopenia, Sjögren's syndrome, large vessel vasculitis, and systemic lupus erythematosus.

View Article and Find Full Text PDF

Background: Our objective was to evaluate the efficacy (clinical and biomarker) and safety of intravenous bapineuzumab in patients with mild to moderate Alzheimer's disease (AD).

Methods: Two of four phase 3, multicenter, randomized, double-blind, placebo-controlled, 18-month trials were conducted globally: one in apolipoprotein E ε4 carriers and another in noncarriers. Patients received bapineuzumab 0.

View Article and Find Full Text PDF

Objectives: To explore the effects of tofacitinib-an oral Janus kinase inhibitor for the treatment of rheumatoid arthritis (RA)-with or without methotrexate (MTX), on MRI endpoints in MTX-naive adult patients with early active RA and synovitis in an index wrist or hand.

Methods: In this exploratory, phase 2, randomised, double-blind, parallel-group study, patients received tofacitinib 10 mg twice daily + MTX, tofacitinib 10 mg twice daily + placebo (tofacitinib monotherapy), or MTX + placebo (MTX monotherapy), for 1 year. MRI endpoints (Outcome Measures in Rheumatology Clinical Trials RA MRI score (RAMRIS), quantitative RAMRIS (RAMRIQ) and dynamic contrast-enhanced (DCE) MRI) were assessed using a mixed-effect model for repeated measures.

View Article and Find Full Text PDF