There is a long history of linking the perceptions of temperature and color (the "Hue-heat hypothesis"): red (R) and yellow (Y) are often considered warm, whereas blue (B) and green (G) are cool. Past studies, however, have largely used relatively broad-band light at a fixed intensity to test these relations. We tested whether increasing the intensity of highly saturated primary colors would lead to a concomitant change in the perceived temperature of those colors.
View Article and Find Full Text PDFChanges to neuronal connectivity are believed to be a key factor in cognitive impairments associated with normal aging. Because of its effect on activities of daily living, deficient motor control is a critical type of cognitive decline to understand. Diminished inhibitory networks in the cortex are implicated in such motor control deficits, pointing to the connectivity of inhibitory cortical interneurons as an important area for study.
View Article and Find Full Text PDFThe realization and discovery of quantum spin liquid (QSL) candidate materials are crucial for exploring exotic quantum phenomena and applications associated with QSLs. Most existing metal-organic two-dimensional (2D) quantum spin liquid candidates have structures with spins arranged on the triangular or kagome lattices, whereas honeycomb-structured metal-organic compounds with QSL characteristics are rare. Here, we report the use of 2,5-dihydroxy-1,4-benzoquinone (Xdhbq, X = Cl, Br, H) as the linkers to construct cobalt(II) honeycomb lattices (NEt)[Co(Xdhbq)] as promising Kitaev-type QSL candidate materials.
View Article and Find Full Text PDFTopological insulators and semimetals have been shown to possess intriguing thermoelectric properties promising for energy harvesting and cooling applications. However, thermoelectric transport associated with the Fermi arc topological surface states on topological Dirac semimetals remains less explored. This work systematically examines thermoelectric transport in a series of topological Dirac semimetal CdAs thin films grown by molecular beam epitaxy.
View Article and Find Full Text PDFBackground: Macular pigment optical density (MPOD) remains an indispensable biomarker to measure fruit and vegetable intake, with a biologically plausible correlation to vision and cognition. However, evidence in the sub-Saharan regions, including Ghana, is lacking.
Objective: This study explored dietary carotenoid intake on MPOD and its influence on cognitive and visual function in a healthy Ghanaian sample.