Publications by authors named "B Wiedmann"

Hepatitis C virus (HCV) infection is a significant cause of liver disease affecting 80-150 million people globally. Diacylglycerol transferase 1 (DGAT-1), a triglyceride synthesis enzyme, is important for the HCV life cycle in vitro. Pradigastat, a potent DGAT-1 inhibitor found to lower triglycerides and HgbA1c in patients, was investigated for safety and efficacy in patients with HCV.

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) infection is usually benign in healthy individuals but can cause life-threatening disease in those with compromised immune systems. Approved drugs available to treat HCMV disease, including ganciclovir, cidofovir, and foscarnet, have significant toxicities that limit their use in certain patient populations. LJP538 and LJP539 are human monoclonal antibodies that are being evaluated as immunoglobulin therapeutics.

View Article and Find Full Text PDF

Nonimmunosuppressive cyclophilin inhibitors have demonstrated efficacy for the treatment of hepatitis C infection (HCV). However, alisporivir, cyclosporin A, and most other cyclosporins are potent inhibitors of OATP1B1, MRP2, MDR1, and other important drug transporters. Reduction of the side chain hydrophobicity of the P4 residue preserves cyclophilin binding and antiviral potency while decreasing transporter inhibition.

View Article and Find Full Text PDF

Synthesis and SAR of 2-alkyloxazoles as class III phosphatidylinositol-4-kinase beta (PI4KIIIβ) inhibitors is described. These compounds demonstrate that inhibition of PI4KIIIβ leads to potent inhibition of HCV replication as observed in genotype (GT) 1a and 1b replicon and GT2a JFH1 virus assays in vitro.

View Article and Find Full Text PDF

The cyclophilins are widely expressed enzymes that catalyze the interconversion of the cis and trans peptide bonds of prolines. The immunosuppressive natural products cyclosporine A and sanglifehrin A inhibit the enzymatic activity of the cyclophilins. Chemical modification of both the cyclosporine and sanglifehrin scaffolds has produced many analogues that inhibit cyclophilins in vitro but have reduced immunosuppressive properties.

View Article and Find Full Text PDF