Gut microbiota-derived metabolites play a pivotal role in the maintenance of intestinal immune homeostasis. Here, we demonstrate that the human commensal possesses a specific metabolic fingerprint, consisting predominantly of the tryptophan catabolite indole-3-propionic acid (IPA), the branched-chain acids (BCFAs) isobutyrate and isovalerate and the short-chain fatty acids (SCFAs) acetate and propionate. Mono-colonization of germ-free mice with (CS mice) affected colonic mucosal immune cell phenotypes, including up-regulation of gene expression, and increased abundance of transcriptionally active colonic tuft cells and Foxp3 regulatory T cells (Tregs).
View Article and Find Full Text PDFAdjuvant treatment for Glioblastoma Grade 4 with Temozolomide (TMZ) inevitably fails due to therapeutic resistance, necessitating new approaches. Apoptosis induction in GB cells is inefficient, due to an excess of anti-apoptotic XPO1/Bcl-2-family proteins. We assessed TMZ, Methotrexate (MTX), and Cytarabine (Ara-C) (apoptosis inducers) combined with XPO1/Bcl-2/Mcl-1-inhibitors (apoptosis rescue) in GB cell lines and primary GB stem-like cells (GSCs).
View Article and Find Full Text PDFα-Linolenic acid (ALA) is well-known for its anti-inflammatory activity. In contrast, the influence of an ALA-rich diet on intestinal microbiota composition and its impact on small intestine morphology are not fully understood. In the current study, we kept adult C57BL/6J mice for 4 weeks on an ALA-rich or control diet.
View Article and Find Full Text PDFPII proteins comprise an ancient superfamily of signal transduction proteins, widely distributed among all domains of life. In general, PII proteins measure and integrate the current carbon/nitrogen/energy status of the cell through interdependent binding of ATP, ADP and 2-oxogluterate. In response to effector molecule binding, PII proteins interact with various PII-receptors to tune central carbon- and nitrogen metabolism.
View Article and Find Full Text PDFP signal transduction proteins are widely spread among all domains of life where they regulate a multitude of carbon and nitrogen metabolism related processes. Non-diazotrophic cyanobacteria can utilize a high variety of organic and inorganic nitrogen sources. In recent years, several physiological studies indicated an involvement of the cyanobacterial P protein in regulation of ammonium, nitrate/nitrite, and cyanate uptake.
View Article and Find Full Text PDF