Publications by authors named "B W Raaymakers"

Background: For the development and validation of dynamic treatment modalities and processes on the MR-linac, independent measurements should be performed that validate dose delivery and linac behavior at a high temporal resolution. To achieve this, a detector with both high temporal and spatial resolution is necessary.

Purpose: This study investigates the suitability of a Delta4 Phantom+ MR (Delta4) detector array for time-resolved dosimetry in the 1.

View Article and Find Full Text PDF

Background/purpose: Radiation-induced cardiac toxicity in lung cancer patients has received increased attention since RTOG 0617. However, large cohort studies with accurate cardiac substructure (CS) contours are lacking, limiting our understanding of the potential influence of individual CSs. Here, we analyse the correlation between CS dose and overall survival (OS) while accounting for deep learning (DL) contouring uncertainty, uncertainty and different modelling approaches.

View Article and Find Full Text PDF

Background And Purpose: During an end-to-end (E2E) test on the online workflow of the MR-linac, the performance of the treatment starting from the acquisition of pre-treatment MRI scans and ending with dose delivery is quantified. In such a test, the geometrical accuracy of the entire workflow is assessed. Ideally, the 3D geometrical accuracy of dose delivery on an MR-linac should be assessed using dosimeters that provide 3D dose distributions.

View Article and Find Full Text PDF

Plastic scintillation dosimeters (PSDs) are highly suitable for real-time dosimetry on the MR-linac. For optimal performance, the primary signal (scintillation) needs to be separated from secondary optical effects (Cerenkov, fluorescence and optical fiber attenuation). This requires a spectral separation approach and careful calibration.

View Article and Find Full Text PDF

Purpose: Long treatment sessions are a limitation within magnetic resonance imaging guided adaptive radiation therapy (MRIgART). This work aims for significantly enhancing the delivery efficiency on the magnetic resonance linear accelerator (MR-linac) by introducing dedicated optimization and delivery techniques for volumetric modulated arc therapy (VMAT). VMAT plan and delivery quality during MRIgART is compared with step-and-shoot intensity-modulated radiation therapy (IMRT) for prostate stereotactic body radiation therapy.

View Article and Find Full Text PDF