Publications by authors named "B W Lites"

The penumbra of a sunspot is composed of numerous thin, radially extended, bright and dark filaments carrying outward gas flows (the Evershed flow). Using high-resolution images obtained by the Solar Optical Telescope aboard the solar physics satellite Hinode, we discovered a number of penumbral bright filaments revealing twisting motions about their axes. These twisting motions are observed only in penumbrae located in the direction perpendicular to the symmetry line connecting the sunspot center and the solar disk center, and the direction of the twist (that is, lateral motions of intensity fluctuation across filaments) is always from limb side to disk-center side.

View Article and Find Full Text PDF

We observed fine-scale jetlike features, referred to as penumbral microjets, in chromospheres of sunspot penumbrae. The microjets were identified in image sequences of a sunspot taken through a Ca II H-line filter on the Solar Optical Telescope on board the Japanese solar physics satellite Hinode. The microjets' small width of 400 kilometers and short duration of less than 1 minute make them difficult to identify in existing observations.

View Article and Find Full Text PDF

The heating of the solar chromosphere and corona is a long-standing puzzle in solar physics. Hinode observations show the ubiquitous presence of chromospheric anemone jets outside sunspots in active regions. They are typically 3 to 7 arc seconds = 2000 to 5000 kilometers long and 0.

View Article and Find Full Text PDF

Solar prominences are cool 10(4) kelvin plasma clouds supported in the surrounding 10(6) kelvin coronal plasma by as-yet-undetermined mechanisms. Observations from Hinode show fine-scale threadlike structures oscillating in the plane of the sky with periods of several minutes. We suggest that these represent Alfvén waves propagating on coronal magnetic field lines and that these may play a role in heating the corona.

View Article and Find Full Text PDF

We reanalyze the effects of atmosphere-induced image motions on the measurement of solar polarized light using a formalism developed by Lites. Our reanalysis is prompted by the advent of adaptive optics (AO) systems that reduce image motion and higher-order aberrations, by the availability of liquid crystals as modulation devices, and by the need to understand how best to design polarimeters for future telescopes such as the Advanced Technology Solar Telescope. In this first attempt to understand the major issues, we analyze the influence of residual image motion (tip-tilt) corrections of operational AO systems on the cross talk between Stokes parameters and present results for several polarization analysis schemes.

View Article and Find Full Text PDF