Publications by authors named "B W Berger"

Biomineralization is a green synthesis route for a variety of metal nanoparticles. Silicatein is a biomineralization protein originally found in marine sponge that converts inorganic precursors to metal oxide nanoparticles. In this work, we investigate the popular catalytic triad hypothesis and implement directed evolution with the aim to improve the solubility and kinetics of silicatein to enable increased nanoparticle synthesis.

View Article and Find Full Text PDF

The relative performance of rhizobial strains could depend on their resource allocation, environmental conditions, and host genotype. Here, we used a high-throughput shoot phenotyping to investigate the effects of Mesorhizobium strain on the growth dynamics, nodulation and bacteroid traits with four chickpea (Cicer arietinum) varieties grown under different water regimes in an experiment including four nitrogen sources (two Mesorhizobium strains, and two uninoculated controls: nitrogen fertilised and unfertilised) under well-watered and drought conditions. We asked three questions.

View Article and Find Full Text PDF

Objective: Nonproliferative diabetic retinopathy (NPDR) is a progressive disease that can lead to blindness. Current therapies for NPDR are invasive and not extensively used or accessible until the disease progresses, pointing to the need for an early noninvasive treatment. The objective of CANBERRA was to assess the safety, tolerability, and efficacy of oral administration of vicasinabin (RG7774) on the severity of diabetic retinopathy (DR) in participants with moderately severe to severe NPDR and good vision.

View Article and Find Full Text PDF

is a Gram-positive bacterium causing listeriosis, a severe infection responsible for significant morbidity and mortality globally. Its persistence on food processing surfaces via biofilm formation presents a major challenge, as conventional sanitizers and antimicrobials exhibit limited efficacy against biofilm-embedded cells. This study investigates a novel approach combining an engineered polysaccharide-degrading enzyme (CAase) with a bacteriocin (thermophilin 110) produced by .

View Article and Find Full Text PDF