This study examined various source-separating sanitation systems to evaluate their environmental performance, providing decision-makers with insights for selecting an appropriate system for a newly developed neighborhood in Sweden. A full consequential LCA was conducted to account for resource recovery and substitution. The local wastewater treatment plant WWTP was modeled as a reference.
View Article and Find Full Text PDFTo achieve the universal target of 'safely managed sanitation' set out in UN Sustainable Development Goal 6, the world needs to increase its rate of progress, since e.g. Phnom Penh, the capital of Cambodia, currently has zero percent safely managed sanitation.
View Article and Find Full Text PDFThis study evaluated the potential for combining dehydrated human urine with one other form of organic waste to create circular fertilisers tailored to meet the macronutrient demand of 15 major crops cultivated globally. Through a reverse blending modelling approach, data on 359 different organic wastes were used to identify 38 fertiliser blends. Materials found to be particularly suitable as blending materials were various biochars and ashes, due to their low nitrogen and high phosphorus and/or potassium content, and byproduct concentrates, due to their high phosphorus content, since the nitrogen content of human urine is disproportionately higher than its phosphorus content.
View Article and Find Full Text PDFBiowaste generation is increasing worldwide and inadequate disposal has strong negative impacts on food systems and ecosystems. Biodigestion of biowaste using black soldier fly (Hermetia illucens) larvae (BSFL) generates valuable by-products such as animal feed (larval biomass) and organic fertiliser (frass). However, the latter is typically unstable immediately after waste conversion and is thus unsafe for use as a fertilizer in terms of maturity.
View Article and Find Full Text PDFIn household wastewater, a large proportion of organic micropollutants (OMPs) load is attributed to human urine. OMPs could pose a risk to human and environmental health when urine collected in source-separating sanitation systems is recycled as crop fertiliser. This study evaluated degradation of 75 OMPs in human urine treated by a UV-based advanced oxidation process.
View Article and Find Full Text PDF