Publications by authors named "B Viallet"

Correction for 'Towards wireless highly sensitive capacitive strain sensors based on gold colloidal nanoparticles' by H. Nesser et al., Nanoscale, 2018, DOI: 10.

View Article and Find Full Text PDF

We designed, produced and characterized new capacitive strain sensors based on colloidal gold nanoparticles. The active area of these sensors, made up of a 1 mm2 close-packed assembly of gold nanoparticles between interdigitated electrodes, was designed to achieve measurable capacitance (>∼1 pF) and overcome parasitic capacitances. Electro-mechanical experiments revealed that the sensitivity of such capacitive sensors increases in relation to the size of the nanoparticles.

View Article and Find Full Text PDF

Nanoparticle assemblies with thiol-terminated alkyl chains are studied by conducting atomic force microscopy (c-AFM) regarding their use as strain gauges for touch-sensitive panels. Current-force spectroscopy is used as a characterization tool complementary to the macroscopic setup since it allows a bias to be applied to a limited number of junctions, overcoming the Coulomb blockade energy and focusing on the contact electromechanics and the transport mechanism across the ligand. First, transition voltage spectroscopy is applied with varying force to target the underlying tunneling mechanism by observing whether the transition between the ohmic and exponential current-voltage behavior is force-dependent.

View Article and Find Full Text PDF

We report on photo-current generation in freestanding monolayered gold nanoparticle membranes excited by using a focused laser beam. The absence of a substrate leads to a 50% increase of the photo-current at the surface plasmon resonance. This current is attributed to a combination of trap state dynamics and bolometric effects in a nanocomposite medium yielding a temperature rise of 40 K.

View Article and Find Full Text PDF

The electro-mechanical sensing properties of freestanding monolayered membranes of dodecanethiol coated 7 nm gold nanoparticles (NPs) are investigated using AFM force spectroscopy and conductive AFM simultaneously. The electrical resistance of the NP membranes increases sensitively with the point-load force applied in the center of the membranes using an AFM tip. Numerical simulations of electronic conduction in a hexagonally close-packed two-dimensional (2D) array of NPs under point load-deformation are carried out on the basis of electronic transport measurements at low temperatures and strain modeling of the NP membranes by finite element analysis.

View Article and Find Full Text PDF