Publications by authors named "B Veera Swamy"

Developing high-yielding rice varieties that possess favorable agronomic characteristics and enhanced grain Zn content is crucial in ensuring food security and addressing nutritional needs. This research employed ICIM, IM, and multi-parent population QTL mapping methods to identify important genetic regions associated with traits such as DF, PH, NT, NP, PL, YLD, TGW, GL, GW, Zn, and Fe. Two populations of recombinant inbred lines consisting of 373 lines were phenotyped for agronomic, yield and grain micronutrient traits for three seasons at IRRI, and genotyped by sequencing.

View Article and Find Full Text PDF

The traditional rice genotypes of Assam are considered to have biological value due to the presence of several bioactive compounds like flavonoids, polyphenols, and anthocyanins, which have antioxidant, anti-cancer, anti-diabetic, and anti-aging properties. The pigmented genotypes are considered to have high iron (Fe) content. However, the effect of Fe and Zinc (Zn) accumulation on anthocyanin content is yet to be studied in pigmented rice of Assam.

View Article and Find Full Text PDF

Breeding staple crops with increased micronutrient concentration is a sustainable approach to address micronutrient malnutrition. We carried out Multi-Cross QTL analysis and Inclusive Composite Interval Mapping for 11 agronomic, yield and biofortification traits using four connected RILs populations of rice. Overall, MC-156 QTLs were detected for agronomic (115) and biofortification (41) traits, which were higher in number but smaller in effects compared to single population analysis.

View Article and Find Full Text PDF

A simple, novel, and less cost yellow (Erythrosine) modified pencil graphite electrode (Po-ERY/MGPE) was successfully fabricated via electropolymerization method using cyclic voltammetric techniques. The fabricated Po-ERY/MGPE opted as a sensor for the detection of Adrenaline (ADR) in 0.2 M PBS (7.

View Article and Find Full Text PDF

Biofortification of rice with improved grain zinc (Zn) content is the most sustainable and cost-effective approach to address Zn malnutrition in Asia. Genomics-assisted breeding using precise and consistent Zn quantitative trait loci (QTLs), genes, and haplotypes can fast-track the development of Zn biofortified rice varieties. We conducted the meta-analysis of 155 Zn QTLs reported from 26 different studies.

View Article and Find Full Text PDF