Background: Currently, lack of standardization for fecal microbiota transplantation (FMT) in equine practice has resulted in highly variable techniques, and there is no data on the bacterial metabolic activity or viability of the administered product. The objectives of this study were to compare the total and potentially metabolically active bacterial populations in equine FMT, and assess the effect of different frozen storage times, buffers, and temperatures on an equine FMT product. Fresh feces collected from three healthy adult horses was subjected to different storage methods.
View Article and Find Full Text PDFUnlabelled: Copious amounts of methane, a major constituent of greenhouse gases currently driving climate change, are emitted by livestock, and efficient methods that curb such emissions are urgently needed to reduce global warming. When fed to cows, the red seaweed (AT) can reduce enteric methane emissions by up to 80%, but the achieved results can vary widely. Livestock produce methane as a byproduct of methanogenesis, which occurs during the breakdown of feed by microbes in the rumen.
View Article and Find Full Text PDFCalf diarrhea is a leading cause of death in preweaning calves and it causes major economic losses to producers. Acidified milk has been shown to have beneficial effects on health and growth parameters in calves but there is little research into its effects on the microbiota, and few studies on the use of acidified colostrum. The purpose of this study was to compare how feeding acidified colostrum to calves at birth affects fecal microbiota from birth through 8 wk of age compared with calves fed nonacidified colostrum.
View Article and Find Full Text PDFRumen microbes play an important role in the conversion of indigestible plant material to energy and protein in dairy cows. Sampling for ruminal contents via cannula is considered the gold standard technique for microbial analysis, but the technique requires ruminally cannulated animals and specialized animal facilities. The purpose of this study was to determine whether other sampling methods and locations along the digestive tract may serve as noninvasive proxies to the cannula method for microbial analysis.
View Article and Find Full Text PDFBackground: Enteric methane emissions from dairy cows are an environmental problem as well as a gross feed energy loss to the animal. Methane is generated in the rumen by methanogenic archaea from hydrogen (H) + carbon dioxide and from H + methanol or methylamines. The methanogenic substrates are provided by non-methanogens during feed fermentation.
View Article and Find Full Text PDF