Publications by authors named "B Van de Poel"

Ethylene biosynthesis and signaling are pivotal pathways in various plant aging processes, including fruit ripening. Kinetic models can be used to better understand metabolic pathways, but modeling of the ethylene-related pathways is limited and the link between these pathways remains unsolved. A transcriptomics-based kinetic model was developed, consisting of ordinary differential equations describing ethylene biosynthesis and signaling pathways in tomato during fruit development and ripening, both on- and off-vine.

View Article and Find Full Text PDF

In seed plants, the canonical role of 1-aminocyclopropane-1-carboxylic acid (ACC) is to serve as the precursor in the biosynthesis of the phytohormone ethylene, and indeed, ACC treatment is often used as a proxy for ethylene treatment. Increasing evidence suggests that ACC can also act independently of ethylene to regulate various aspects of plant growth and development. Here, we explore the effects of ACC on root growth and the mechanisms by which it acts.

View Article and Find Full Text PDF

Background: N-malonyl 1-aminocyclopropane-1-carboxylic acid (MACC) is a major conjugate of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and may therefore play an important role in regulating ethylene production, as well as ethylene-independent ACC signalling. While the enzyme responsible for this derivatization, ACC malonyltransferase (AMT), has been studied in the past, its identity remains unknown. Methods to assay AMT activity are not well established, and no standardized assay has been described.

View Article and Find Full Text PDF

Sugars act as signaling molecules to modulate various growth processes and enhance plant tolerance to various abiotic and biotic stresses. Moreover, sugars contribute to the postharvest flavor in fleshy fruit crops. To date, the regulation of sugar metabolism and its effect in plant growth, fruit ripening, postharvest quality, and stress resistance remains not fully understood.

View Article and Find Full Text PDF

The gene plays an essential role in the gametophytic self-incompatibility (GSI) system of . It codes for the stylar-expressed S-RNase protein which inhibits the growth of incompatible pollen tubes through cytotoxicity and the induction of programmed cell death in the pollen tube. While research on the GSI system has primarily focused on the gene, there is still a lack of insight into its spatiotemporal expression profile and the factors that regulate it.

View Article and Find Full Text PDF