Publications by authors named "B V Plapp"

Histidine residues 44 and 48 in yeast alcohol dehydrogenase (ADH) bind to the coenzymes NAD(H) and contribute to catalysis. The individual H44R and H48Q substitutions alter the kinetics and pH dependencies, and now the roles of other ionizable groups in the enzyme were studied in the doubly substituted H44R/H48Q ADH. The substitutions make the enzyme more resistant to inactivation by diethyl pyrocarbonate, modestly improve affinity for coenzymes, and substantially decrease catalytic efficiencies for ethanol oxidation and acetaldehyde reduction.

View Article and Find Full Text PDF

Alcohol dehydrogenase catalyzes the reversible transfer of a hydride directly from an alcohol to the nicotinamide ring of NAD to form an aldehyde and NADH, and the proton from the alcohol probably is transferred through a hydrogen-bonded system to the imidazole of His-48. Studies of the pH dependencies, and solvent and substrate isotope effects on the wild-type and the enzyme with His-48 substituted with Gln-48 were used to demonstrate a role for the proton relay system. The H48Q substitution increases affinities for NAD and NADH by ∼2-fold, suggesting that the overall protein structure is maintained.

View Article and Find Full Text PDF

His-48 in yeast alcohol dehydrogenase I (His 51 in horse liver alcohol dehydrogenase) is a highly conserved residue in the active sites of many alcohol dehydrogenases. The imidazole group of His-48 may participate in base catalysis of proton transfer as it is linked by hydrogen bonds through the 2'-hydroxyl group of the nicotinamide ribose and the hydroxyl group of Thr-45 to the hydroxyl group of the alcohol bound to the catalytic zinc. In this study, His-48 was substituted with a glutamic acid residue to determine if a carboxylate could replace imidazole or to a serine residue to determine if the exposure of the 2'-hydroxyl group of the ribose to solvent would allow proton transfer to water without base catalysis.

View Article and Find Full Text PDF

Enzymes catalyze reactions by binding and orienting substrates with dynamic interactions. Horse liver alcohol dehydrogenase catalyzes hydrogen transfer with quantum-mechanical tunneling that involves fast motions in the active site. The structures and B factors of ternary complexes of the enzyme with NAD and 2,3,4,5,6-pentafluorobenzyl alcohol or NAD and 2,2,2-trifluoroethanol were determined to 1.

View Article and Find Full Text PDF

X-Ray crystallography shows that the hydroxyl group of Thr-45 in the fermentative alcohol dehydrogenase (ADH1) from Saccharomyces cerevisiae is hydrogen-bonded to the hydroxyl group of the alcohol bound to the catalytic zinc and is part of a proton relay system linked to His-48. The contribution of Thr-45 to catalysis was studied with steady state kinetics of the enzyme with the T45G substitution. Affinities for coenzymes decrease by only 2-4-fold, but the turnover numbers (V/E) and catalytic efficiencies (V/KE) decrease 480-fold and 2900-fold for the oxidation of ethanol and 450-fold and 8400-fold for acetaldehyde reduction, respectively, relative to wild-type enzyme.

View Article and Find Full Text PDF