Publications by authors named "B Thillaye-Goldenberg"

Mast cells are important in the initiation of ocular inflammation, but the consequences of mast cell degranulation on ocular pathology remain uncharacterized. We induced mast cell degranulation by local subconjunctival injection of compound 48/80. Initial degranulation of mast cells was observed in the choroid 15 minutes after the injection and increased up to 3 hours after injection.

View Article and Find Full Text PDF

Purpose: The outer limiting membrane (OLM) is considered to play a role in maintaining the structure of the retina through mechanical strength. However, the observation of junction proteins located at the OLM and its barrier permeability properties may suggest that the OLM may be part of the retinal barrier.

Material And Methods: Normal and diabetic rat, monkey, and human retinas were used to analyze junction proteins at the OLM.

View Article and Find Full Text PDF

Intraocular inflammation has been recognized as a major factor leading to blindness. Because tumor necrosis factor-alpha (TNF-alpha) enhances intraocular cytotoxic events, systemic anti-TNF therapies have been introduced in the treatment of severe intraocular inflammation, but frequent re-injections are needed and are associated with severe side effects. We have devised a local intraocular nonviral gene therapy to deliver effective and sustained anti-TNF therapy in inflamed eyes.

View Article and Find Full Text PDF

Purpose: Plasmid electrotransfer in the ciliary muscle allows the sustained release of therapeutic proteins within the eye. The aim of this study was to evaluate whether the ocular production of TNF-alpha soluble receptor, using this nonviral gene therapy method, could have a beneficial local effect in a model of experimental autoimmune uveoretinitis (EAU).

Methods: Injection of a plasmid encoding a TNF-alpha p55 receptor (30 microg) in the ciliary muscle, combined with electrotransfer (200 V/cm), was carried out in Lewis rat eyes 4 days before the induction of EAU by S-antigen.

View Article and Find Full Text PDF

Purpose: Primary intraocular lymphoma is a high-grade non-Hodgkin lymphoma with a pathogenesis that is still unclear. Microenvironment is known to be crucial in controlling tumor growth and maintenance. To study the immune microenvironment in intraocular lymphomas and to characterize the cytokine polarization of infiltrating T-lymphocytes, a new murine model of intraocular B-cell lymphoma was developed.

View Article and Find Full Text PDF