Publications by authors named "B Tanganelli"

Cockayne syndrome is a multisystem sun-sensitive genetic disorder associated with a specific defect in the ability to perform transcription-coupled repair of active genes after UV irradiation. Two complementation groups (CS-A and CS-B) have been identified, and 80% of patients have been assigned to the CS-B complementation group. We have analyzed the sites of the mutations in the CSB gene in 16 patients, to determine the spectrum of mutations in this gene and to see whether the nature of the mutation correlates with the type and severity of the clinical symptoms.

View Article and Find Full Text PDF

Xeroderma pigmentosum (XP)/Cockayne syndrome (CS) complex is a combination of clinical features of two rare genetic disorders in one individual. A sun-sensitive boy (XP20BE) who had severe symptoms of CS, with dwarfism, microcephaly, retinal degeneration, and mental impairment, had XP-type pigmentation and died at 6 y with marked cachexia (weight 14.5 lb) without skin cancers.

View Article and Find Full Text PDF

Nucleotide excision repair (NER)-deficient human cells have been assigned so far to a genetic complementation group by a somatic cell fusion assay and, more recently, by microinjection of cloned DNA repair genes. We describe a new technique, based on the host cell reactivation assay, for the rapid determination of the complementation group of NER-deficient xeroderma pigmentosum (XP), Cockayne's syndrome (CS) and photosensitive trichothiodystrophy (TTD) human cells by cotransfection of a UV-irradiated reporter plasmid with a second vector containing a cloned repair gene. Expression of the reporter gene, either chloramphenicol acetyltransferase (CAT) or luciferase, reflects the DNA repair ability restored by the introduction of the appropriate repair gene.

View Article and Find Full Text PDF