Publications by authors named "B T Shiramizu"

While the protective role of neutrophil extracellular traps (NETs) in limiting human immunodeficiency virus (HIV) spread to susceptible cells has been documented, there is comparatively little insight into whether NET formation is harmful in people living with HIV (PLWH). To gain insight into neutrophil dysregulation and the pathological role of NETs in HIV, we examined expressions of NET-associated markers [cell-free DNA (cfDNA) and citrullinated histone H3 (CitH3)] in the plasmas from a cohort of the Hawaii Aging with HIV-cardiovascular and HIV-seronegative (HIV-) individuals. In a subset of participants, circulating low-density granulocyte (LDG) levels and their maturation and activation status were analyzed via flow cytometry.

View Article and Find Full Text PDF

Objectives: Chemokine receptor CCR5 is the principal co-receptor for entry of M-tropic HIV virus into immune cells. It is expressed in the central nervous system and may contribute to neuro-inflammation. The CCR5 antagonist maraviroc (MVC) has been suggested to improve HIV-associated neurocognitive impairment (NCI).

View Article and Find Full Text PDF

Observing multiple molecular species simultaneously with high spatiotemporal resolution is crucial for comprehensive understanding of complex, dynamic, and heterogeneous biological systems. The recently reported super-multiplex optical imaging breaks the "color barrier" of fluorescence to achieve multiplexing number over six in living systems, while its temporal resolution is limited to several minutes mainly by slow color tuning. Herein, we report integrated stimulated Raman and fluorescence microscopy with simultaneous multimodal color tunability at high speed, enabling super-multiplex imaging covering diverse molecular contrasts with temporal resolution of seconds.

View Article and Find Full Text PDF

The National Institutes of Health's Environmental Influences on Child Health Outcomes (ECHO) program aims to study high-priority and high-impact pediatric conditions. This broad-based health initiative is unique in the National Institutes of Health research portfolio and involves 2 research components: (1) a large group of established centers with pediatric cohorts combining data to support longitudinal studies (ECHO cohorts) and (2) pediatric trials program for institutions within Institutional Development Awards states, known as the ECHO Institutional Development Awards States Pediatric Clinical Trials Network (ISPCTN). In the current presentation, we provide a broad overview of the ISPCTN and, particularly, its importance in enhancing clinical trials capabilities of pediatrician scientists through the support of research infrastructure, while at the same time implementing clinical trials that inform future health care for children.

View Article and Find Full Text PDF