Publications by authors named "B T Andresen"

This paper extends the concept of epitropy, as introduced in previous work, to capture the effects of extreme tail behavior arising naturally over very long time and large space scales. Epitropy has some qualities that parallel entropy, although it is not quite the same. Its function is to capture the effects of a probability distribution function (PDF) having only a finite populated domain, which was introduced to eliminate divergent moment integrals.

View Article and Find Full Text PDF

Background: Clear cell renal cell carcinoma (ccRCC) is a type of cancer characterized by a vast intracellular accumulation of lipids that are critical to sustain growth and viability of the cells in the tumour microenvironment. Stearoyl-CoA 9-desaturase 1 (SCD-1) is an essential enzyme for the synthesis of monounsaturated fatty acids and consistently overexpressed in all stages of ccRCC growth.

Methods: Human clear cell renal cell carcinoma lines were treated with small-molecule inhibitors of protein kinase CK2.

View Article and Find Full Text PDF

Background: Protein kinase CK2 is a highly conserved enzyme implicated in the pathogenesis of various human illnesses including obesity. Despite compelling evidence for the involvement of this kinase in the pathophysiology of obesity, the molecular mechanisms by which CK2 might regulate fat metabolism are still poorly understood.

Methods And Results: In this study, we aimed to elucidate the role of CK2 on lipid metabolism by employing both in vitro and in vivo approaches using mouse pre-adipocytes and a mouse model of diet-induced obesity.

View Article and Find Full Text PDF

Three approaches for determining the thermodynamic stability of irreversible processes are described in generalized formulations. The simplest is the Gibbs-Duhem theory, specialized to irreversible trajectories, which uses the concept of virtual displacement in the reverse direction. Its only drawback is that even a trajectory leading to an explosion is identified as a thermodynamically stable motion.

View Article and Find Full Text PDF

In this work, we lay the foundations for computing the behavior of a quantum heat engine whose working medium consists of an ensemble of non-harmonic quantum oscillators. In order to enable this analysis, we develop a method based on the Schrödinger picture. We investigate different possible choices on the basis of expanding the density operator, as it is crucial to select a basis that will expedite the numerical integration of the time-evolution equation without compromising the accuracy of the computed results.

View Article and Find Full Text PDF