Publications by authors named "B Szeles"

Understanding the role of soil moisture and other controls in runoff generation is important for predicting runoff across scales. This paper aims to identify the degree of non-linearity of the relationship between event peak runoff and potential controls for different runoff generation mechanisms in a small agricultural catchment. The study is set in the 66 ha Hydrological Open Air Laboratory, Austria, where discharge was measured at the catchment outlet and for 11 sub-catchments or hillslopes with different runoff generation mechanisms.

View Article and Find Full Text PDF

The objective of this study is to investigate the factors that control event runoff characteristics at the small catchment scale. The study area is the Hydrological Open Air Laboratory, Lower Austria. Event runoff coefficient (Rc), recession time constant (Tc) and peak discharge (Qp) are estimated from hourly discharge and precipitation data for 298 events in the period 2013-2015.

View Article and Find Full Text PDF

This study investigated the added value of different data for calibrating a runoff model for small basins. The analysis was performed in the 66 ha Hydrological Open Air Laboratory, in Austria. An Hydrologiska Byråns Vattenbalansavdelning (HBV) type, spatially lumped hydrologic model was parameterized following two approaches.

View Article and Find Full Text PDF

The objective of this study was to understand whether spatial differences in runoff generation mechanisms affect the magnitudes of diurnal streamflow fluctuations during low flow periods and which part of the catchment induces the diurnal streamflow signal. The spatiotemporal variability of the streamflow fluctuations observed at 12 locations in the 66-ha Hydrological Open Air Laboratory experimental catchment in Austria was explained by differences in the vegetation cover and runoff generation mechanisms. Almost a quarter of the volume associated with diurnal streamflow fluctuations at the catchment outlet was explained by transpiration from vegetation along the tributaries; more than three quarters was due to transpiration by the riparian forest along the main stream.

View Article and Find Full Text PDF