Publications by authors named "B Sundelin"

Exposure to chemical pollution can induce genetic and epigenetic alterations, developmental changes, and reproductive disorders, leading to population declines in polluted environments. These effects are triggered by chemical modifications of DNA nucleobases (DNA adducts) and epigenetic dysregulation. However, linking DNA adducts to the pollution load remains challenging, and the lack of evidence-based DNA adductome response to pollution hampers the development and application of DNA adducts as biomarkers for environmental health assessment.

View Article and Find Full Text PDF

Objectives: Studies on repeat renal biopsies in membranous LN (MLN) are limited, and evaluation of treatment response is mainly based on proteinuria. EM of renal biopsies from rituximab (RTX)-treated MLN patients has revealed resorption of sub-epithelial ICs. Whether resorption phenomena are useful for treatment evaluation, or differs between treatment regimens is not known.

View Article and Find Full Text PDF

Linking exposure to environmental stress factors with diseases is crucial for proposing preventive and regulatory actions. Upon exposure to anthropogenic chemicals, covalent modifications on the genome can drive developmental and reproductive disorders in wild populations, with subsequent effects on the population persistence. Hence, screening of chemical modifications on DNA can be used to provide information on the probability of such disorders in populations of concern.

View Article and Find Full Text PDF

Declining physiological status in marine top consumers has been observed worldwide. We investigate changes in the physiological status and population/community traits of six consumer species/groups in the Baltic Sea (1993-2014), spanning four trophic levels and using metrics currently operational or proposed as indicators of food-web status. We ask whether the physiological status of consumers can be explained by food-web structure and prey food value.

View Article and Find Full Text PDF

Diabetic kidney disease (DKD) is the most common cause of severe renal disease, and few treatment options are available today that prevent the progressive loss of renal function. DKD is characterized by altered glomerular filtration and proteinuria. A common observation in DKD is the presence of renal steatosis, but the mechanism(s) underlying this observation and to what extent they contribute to disease progression are unknown.

View Article and Find Full Text PDF