Publications by authors named "B Stijlemans"

Background & Aims: Liver macrophages fulfill various homeostatic functions and represent an essential line of defense against pathogenic insults. However, it remains unclear whether a history of infectious disease in the liver leads to long-term alterations to the liver macrophage compartment.

Methods: We utilized a curable model of parasitic infection invoked by the protozoan parasite Trypanosoma brucei brucei to investigate whether infection history can durably reshape hepatic macrophage identity and function.

View Article and Find Full Text PDF
Article Synopsis
  • African trypanosomes use a protective layer of variant surface glycoproteins (VSGs) to shield their invariant surface receptors from the host's immune system.
  • This layer is dense and glycosylated, limiting permeability but raising questions about the function of the underlying invariant surface glycoproteins (ISGs).
  • The study reveals that ISGs have intrinsically disordered regions allowing them to switch shapes, facilitating interaction with the host environment while maintaining a low risk of immune detection.
View Article and Find Full Text PDF

Human African trypanosomiasis or sleeping sickness, caused by the protozoan parasite Trypanosoma brucei, is characterized by the manipulation of the host's immune response to ensure parasite invasion and persistence. Uncovering key molecules that support parasite establishment is a prerequisite to interfere with this process. We identified Q586B2 as a T.

View Article and Find Full Text PDF

Within the tumor microenvironment (TME) exists a complex signaling network between cancer cells and stromal cells, which determines the fate of tumor progression. Hence, interfering with this signaling network forms the basis for cancer therapy. Yet, many types of cancer, in particular, solid tumors, are refractory to the currently used treatments, so there is an urgent need for novel molecular targets that could improve current anti-cancer therapeutic strategies.

View Article and Find Full Text PDF

mAbs have been instrumental for targeted cancer therapies. However, their relatively large size and physicochemical properties result in a heterogenous distribution in the tumor microenvironment, usually restricted to the first cell layers surrounding blood vessels, and a limited ability to penetrate the brain. Nanobodies are tenfold smaller, resulting in a deeper tumor penetration and the ability to reach cells in poorly perfused tumor areas.

View Article and Find Full Text PDF