People fall more often when their gait stability is reduced. Gait stability can be directly manipulated by exerting forces or moments onto a person, ranging from simple walking sticks to complex wearable robotics. A systematic review of the literature was performed to determine: What is the level of evidence for different types of mechanical manipulations on improving gait stability? The study was registered at PROSPERO (CRD42020180631).
View Article and Find Full Text PDFFalling is a major cause of morbidity, and is often caused by a decrease in postural stability. A key component of postural stability is whole-body centroidal angular momentum, which can be influenced by control moment gyroscopes. In this proof-of-concept study, we explore the influence of our wearable robotic gyroscopic actuator "GyroPack" on the balance performance and gait characteristics of non-impaired individuals (seven female/eight male, 30 ± 7 years, 68.
View Article and Find Full Text PDFDuring gait neurorehabilitation, many factors influence the quality of gait patterns, particularly the chosen body-weight support (BWS) device. Consequently, robotic BWS devices play a key role in gait rehabilitation of people with neurological disorders. The device transparency, support force vector direction, and attachment to the harness vary widely across existing robotic BWS devices, but the influence of these factors on the production of gait remains unknown.
View Article and Find Full Text PDF