Publications by authors named "B Srinadh"

Neural tube defects (NTDs) are the leading cause of infant deaths worldwide. Lipoprotein related receptor 2 (LRP2) has been shown to play a crucial role in neural tube development in mouse models. However, the role of LRP2 gene in the development of human NTDs is not yet known.

View Article and Find Full Text PDF

Objective: Previous studies have not used family-based methods to evaluate maternal-paternal genetic effects of the folate metabolizing enzyme, dihydro folate reductase (DHFR) essential during embryogenesis. Present study focuses on evaluating the association and influence of parental genetic effects of DHFR 19 bp deletion in the development of foetal neural tube defects (NTDs) using family-based triad approach.

Materials And Methods: The study population (n = 924) including 124 NTD case-parent trios (n = 124 × 3 = 372) and 184 healthy control-parent trios (n = 184 × 3 = 552) from Telangana, India, was genotyped for DHFR 19 bp deletion.

View Article and Find Full Text PDF

Background: The increased complications to the mother and fetus during or after pregnancy and birth are often caused by a wide array of pathogenic organisms mostly belonging to the TORCH group [toxoplasmosis, rubella, cytomegalovirus (CMV), and herpes simplex virus (HSV)]. These agents cause asymptomatic or mild infection in the mother while serious consequences in fetus. The present study was aimed to find significant etiological pathogens in the causation of high risk pregnancy (HRP) in South Indian population.

View Article and Find Full Text PDF

Aim: This study aimed to evaluate the role of methylenetetrahydrofolate dehydrogenase (MTHFD1) G1958A variant (rs2236225) as a 'maternal, paternal, or embryonic' genetic risk factor for neural tube defect (NTD) susceptibility. It also estimated differential associations based on type of NTD, offspring sex, maternal-paternal-offspring genotype incompatibility, and parent-of-origin effects (POE) using both case-control and family-based approach. In addition, genotype impact on serum folate levels was also assessed.

View Article and Find Full Text PDF