Publications by authors named "B Smarsly"

Silica materials, natural and synthetic variants, represent a promising material for the application in heterogeneous organocatalysis due to their readily modifiable surface and chemical inertness. To achieve high catalyst loadings, usually, porous carriers with high surface areas are used, such as silica monoliths or spherical particles for packed bed reactors. While these commercial materials were shown to be efficient supports, their synthesis is elaborate, and thus less complex and cheaper alternatives are of interest, especially considering scaling up for potential applications.

View Article and Find Full Text PDF

Hierarchically porous monolithic silica shows promise as a carrier material for immobilized organocatalysts. Conventional analysis usually includes physisorption, infrared spectroscopy and elemental analysis, among others, to elucidate the pore space and degree of functionalization of the material. However, these methods do not yield information about the spatial distribution of the organic species inside the monolithic reactor.

View Article and Find Full Text PDF

BiOI is a promising material for use in photoelectrocatalytic water oxidation, renowned for its chemical inertness and safety in aqueous media. For device integration, BiOI must be fabricated into films. Considering future industrial applications, automated production is essential.

View Article and Find Full Text PDF

The demand for versatile and sustainable energy materials is on the rise, given the importance of developing novel clean technologies for transition to a net zero economy. Here, we present the synthesis, characterization, and application of lignin-derived ordered mesoporous carbons with various pore sizes (from 5 to approximately 50 nm) as anodes in sodium-ion batteries. We have varied the pore size using self-synthesized PEO--PHA block copolymers with different PEO and PHA chain lengths, applying the "soft templating" approach to introduce isolated spherical pores of 20 to 50 nm in diameters.

View Article and Find Full Text PDF

The connectivity and thermal stability of pores in heterogeneous, mesoporous metal oxide catalysts are key properties controlling their (long-term) efficacy. In this study, we investigate the influence of pH and temperature during a common hydrothermal aftertreatment step in the synthesis of mesoporous CeZrYLaO oxides obtained from molecular precursors via hydrothermal synthesis. This study has a strong focus on the methodological approach, elucidating whether and how even the smallest changes in morphology and connectivity may be unraveled and related to the underlying chemical processes to uncover key parameters for the ongoing improvement of material properties.

View Article and Find Full Text PDF