Publications by authors named "B Shokouhi"

callus contains pluripotent stem cells, and its extract (HPCE) is a natural compound that includes various biologically active components, such as phenolic acids, flavonoids, and naphthodiantrons like hypericin and hyperforin. These components give HPCE significant antibacterial and antioxidant properties, making it a valuable option for wound healing. Unlike traditional wound dressings that may leave a residue or necessitate invasive procedures like phototherapy, HPCE is a promising alternative.

View Article and Find Full Text PDF

Background: High dose chemotherapy is one of the therapeutic strategies for breast cancer and doxorubicin (DOX) as a chemotherapy agent is widely used. DOX indication is limited due to its dose-depended cardiotoxicity. Recently, cannabidiol (CBD) shows antitumoral and cardioprotective effects, so we hypothesized that CBD administration with high-dose DOX chemotherapy can improve anticancer activity and reduce cardiotoxic side effects.

View Article and Find Full Text PDF

Plant Callus are a valuable source of pluripotent stem cells and bioactive phytochemicals. Meanwhile, the Hypericum perforatum callus extract (HPCE) is particularly rich in compounds such as hyperforin, hypericin, quercetin, and other phenolic and flavonoid derivatives. These phytochemicals exhibit strong antibacterial, antioxidant, anti-inflammatory, and anti-fibrotic properties, making them promising for wound healing.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a complex autoimmune disorder that impacts the central nervous system (CNS), resulting in inflammation, demyelination, and neurodegeneration. The NOD-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome, a multiprotein complex of the innate immune system, serves an essential role in the pathogenesis of MS by regulating the production of pro-inflammatory cytokines (IL-1β & IL-18) and the induction of pyroptotic cell death. Mitochondrial dysfunction is one of the main potential factors that can trigger NLRP3 inflammasome activation and lead to inflammation and axonal damage in MS.

View Article and Find Full Text PDF

During the last two decades, new drug delivery strategies have been invented that have been able to solve microbial resistance against antibiotics. The goal of the current report was to assess the antimicrobial effects of nano-catechin gels against clinically isolated one of the main causes of periodontal disease. Catechin-loaded chitosan nanoparticles were prepared by adding a catechin solution to a chitosan solution.

View Article and Find Full Text PDF