Publications by authors named "B Senyuk"

Many living and artificial systems show similar emergent behavior and collective motions on different scales, starting from swarms of bacteria to synthetic active particles, herds of mammals, and crowds of people. What all these systems often have in common is that new collective properties like flocking emerge from interactions between individual self-propelled or driven units. Such systems are naturally out-of-equilibrium and propel at the expense of consumed energy.

View Article and Find Full Text PDF

Objective: The aim: To substantiate the need of wider use of species in dietician rehabilitation of patients with poly- and comorbidity, postcovid syndrome based on the analysis of the latest scientific achievements with the study of their pharmacological properties.

Patients And Methods: Materials and methods: The information search in printed and electronic editions, search scientific bases with application of methods of the analysis, comparison and generalization of information data is carried out.

Conclusion: Conclusions: New scientific data on the pharmacological properties of spices give grounds to use them more widely in the rehabilitation of patients with poly- and comorbidities and infectious processes.

View Article and Find Full Text PDF

Colloidal systems are abundant in technology, in biomedical settings, and in our daily life. The so-called "colloidal atoms" paradigm exploits interparticle interactions to self-assemble colloidal analogs of atomic and molecular crystals, liquid crystal glasses, and other types of condensed matter from nanometer- or micrometer-sized colloidal building blocks. Nematic colloids, which comprise colloidal particles dispersed within an anisotropic nematic fluid host medium, provide a particularly rich variety of physical behaviors at the mesoscale, not only matching but even exceeding the diversity of structural and phase behavior in conventional atomic and molecular systems.

View Article and Find Full Text PDF

Colloidal particles in liquid crystals tend to induce topological defects and distortions of the molecular alignment within the surrounding anisotropic host medium, which results in elasticity-mediated interactions not accessible to their counterparts within isotropic fluid hosts. Such particle-induced coronae of perturbed nematic order are highly responsive to external electric fields, even when the uniformly aligned host medium away from particles exhibits no response to fields below the realignment threshold. Here we harness the nonreciprocal nature of these facile electric responses to demonstrate colloidal locomotion.

View Article and Find Full Text PDF

Dispersing inorganic colloidal nanoparticles within nematic liquid crystals provides a versatile platform both for forming new soft matter phases and for predefining physical behavior through mesoscale molecular-colloidal self-organization. However, owing to formation of particle-induced singular defects and complex elasticity-mediated interactions, this approach has been implemented mainly just for colloidal nanorods and nanoplatelets, limiting its potential technological utility. Here, orientationally ordered nematic colloidal dispersions are reported of pentagonal gold bipyramids that exhibit narrow but controlled polarization-dependent surface plasmon resonance spectra and facile electric switching.

View Article and Find Full Text PDF