Publications by authors named "B Schrunk"

We use high-resolution angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT) calculations to study the electronic and magnetic properties of LaNi, an itinerant magnetic system with a series of three magnetic transition temperatures upon cooling, which end in a weak antiferromagnetic ground state. Our APRES data reveal several electron and hole pockets that have hexagonal symmetry near the Γ point. We observe significant reconstruction of the band structure upon successive magnetic transitions at∼ 61 K,∼ 57 K and∼ 42 K.

View Article and Find Full Text PDF

The Fermi surface plays an important role in controlling the electronic, transport and thermodynamic properties of materials. As the Fermi surface consists of closed contours in the momentum space for well-defined energy bands, disconnected sections known as Fermi arcs can be signatures of unusual electronic states, such as a pseudogap. Another way to obtain Fermi arcs is to break either the time-reversal symmetry or the inversion symmetry of a three-dimensional Dirac semimetal, which results in formation of pairs of Weyl nodes that have opposite chirality, and their projections are connected by Fermi arcs at the bulk boundary.

View Article and Find Full Text PDF

Electrons navigate more easily in a background of ordered magnetic moments than around randomly oriented ones. This fundamental quantum mechanical principle is due to their Bloch wave nature and also underlies ballistic electronic motion in a perfect crystal. As a result, a paramagnetic metal that develops ferromagnetic order often experiences a sharp drop in the resistivity.

View Article and Find Full Text PDF

Time reversal symmetric (TRS) invariant topological insulators (TIs) fullfil a paradigmatic role in the field of topological materials, standing at the origin of its development. Apart from TRS protected strong TIs, it was realized early on that more confounding weak topological insulators (WTI) exist. WTIs depend on translational symmetry and exhibit topological surface states only in certain directions making it significantly more difficult to match the experimental success of strong TIs.

View Article and Find Full Text PDF