Here, a straightforward method is reported for manufacturing 3D microstructured cell-adhesive and cell-repellent multimaterials using two-photon laser printing. Compared to existing strategies, this approach offers bottom-up molecular control, high customizability, and rapid and precise 3D fabrication. The printable cell-adhesive polyethylene glycol (PEG) based material includes an Arg-Gly-Asp (RGD) containing peptide synthesized through solid-phase peptide synthesis, allowing for precise control of the peptide design.
View Article and Find Full Text PDFLittle is known about the contribution of 3D surface geometry to the development of multilayered tissues containing fibrous extracellular matrix components, such as those found in bone. In this study, we elucidate the role of curvature in the formation of chiral, twisted-plywood-like structures. Tissues consisting of murine preosteoblast cells (MC3T3-E1) were grown on 3D scaffolds with constant-mean curvature and negative Gaussian curvature for up to 32 days.
View Article and Find Full Text PDFThe integration of additive manufacturing technologies with the pyrolysis of polymeric precursors enables the design-controlled fabrication of architected 3D pyrolytic carbon (PyC) structures with complex architectural details. Despite great promise, their use in cellular interaction remains unexplored. This study pioneers the utilization of microarchitected 3D PyC structures as biocompatible scaffolds for the colonization of muscle cells in a 3D environment.
View Article and Find Full Text PDFSurface curvature both emerges from, and influences the behavior of, living objects at length scales ranging from cell membranes to single cells to tissues and organs. The relevance of surface curvature in biology is supported by numerous experimental and theoretical investigations in recent years. In this review, first, a brief introduction to the key ideas of surface curvature in the context of biological systems is given and the challenges that arise when measuring surface curvature are discussed.
View Article and Find Full Text PDFAntibiotics (Basel)
October 2021
Fungal infections in humans, contamination of food and structural damage to buildings by fungi are associated with high costs for the general public. In addition, the increase in antifungal resistance towards conventional treatment raises the demand for new fungicidal methods. Here, we present the antifungal use of Photodynamic Inactivation (PDI) based on the natural photosensitizer curcumin and a water-soluble positively charged derivative thereof (SA-CUR 12a) against two different model organisms; grown in a liquid culture and photo treated with a 435 nm LED light followed by counting of the colony-forming units and photoinactivation of tissue-like hyphal spheres of (diameter ~5 mm) with subsequent monitoring of colony growth.
View Article and Find Full Text PDF