Publications by authors named "B Sartory"

Lithium dendrites belong to the key challenges of solid-state battery research. They are unavoidable due to the imperfect nature of surfaces containing defects of a critical size that can be filled by lithium until fracturing the solid electrolyte. The penetration of Li metal occurs along the propagating crack until a short circuit takes place.

View Article and Find Full Text PDF

Graphitic deposits anti-segregate into Ni nanoparticles to provide restored CH adsorption sites and near-surface/dissolved C atoms, which migrate to the Ni /ZrO interface and induce local Zr C formation. The resulting oxygen-deficient carbidic phase boundary sites assist in the kinetically enhanced CO activation toward CO(g). This interface carbide mechanism allows for enhanced spillover of carbon to the ZrO support, and represents an alternative catalyst regeneration pathway with respect to the reverse oxygen spillover on Ni-CeZr O catalysts.

View Article and Find Full Text PDF

Nature uses self-assembly of a fairly limited selection of components to build hard and tough protective tissues like nacre and enamel. The resulting hierarchical micro/nanostructures provide decisive toughening mechanisms while preserving strength. However, to mimic microstructural and mechanical characteristics of natural materials in application-relevant synthetic nanostructures has proven to be difficult.

View Article and Find Full Text PDF

We compare the performance of conventional DC magnetron sputter-deposited (DCMS) TiN diffusion barriers between Cu overlayers and Si(001) substrates with TiTaN barriers grown by hybrid DCMS/high-power impulse magnetron sputtering (HiPIMS) with substrate bias synchronized to the metal-rich portion of each pulse. DCMS power is applied to a Ti target, and HiPIMS applied to Ta. No external substrate heating is used in either the DCMS or hybrid DCMS/HiPIMS process in order to meet future industrial thermal-budget requirements.

View Article and Find Full Text PDF

Because of the tremendous variability of crystallite sizes and shapes in nano-materials, it is challenging to assess the corresponding size-property relationships and to identify microstructures with particular physical properties or even optimized functions. This task is especially difficult for nanomaterials formed by self-organization, where the spontaneous evolution of microstructure and properties is coupled. In this work, two compositionally graded TiAlN films were (i) grown using chemical vapour deposition by applying a varying ratio of reacting gases and (ii) subsequently analysed using cross-sectional synchrotron X-ray nanodiffraction, electron microscopy and nanoindentation in order to evaluate the microstructure and hardness depth gradients.

View Article and Find Full Text PDF