Publications by authors named "B Saint-Jore"

Velocardiofacial/DiGeorge syndrome (VCFS/DGS) is a developmental disorder caused by a 1.5 to 3-Mb hemizygous 22q11.2 deletion.

View Article and Find Full Text PDF

Hypercholesterolemia is frequently associated with elevated Lp(a) levels, an independent risk factor for coronary, cerebrovascular, and peripheral vascular disease. A portion of apolipoprotein(a) [apo(a)] circulates as a series of fragments derived from the N-terminal region of apo(a). The relationship of elevated lipoprotein(a) [Lp(a)] levels to those of circulating apo(a) fragments in polygenic hypercholesterolemia is indeterminate.

View Article and Find Full Text PDF

Hemizygous interstitial deletions in human chromosome 22q11 are associated with velocardiofacial syndrome and DiGeorge syndrome and lead to multiple congenital abnormalities, including cardiovascular defects. The gene(s) responsible for these disorders is thought to reside in a 1.5-Mb region of 22q11 in which 27 genes have been identified.

View Article and Find Full Text PDF

Autosomal dominant type IIa hypercholesterolaemia (ADH) is characterised by an elevation of total plasma cholesterol associated with increased LDL particles. Numerous different molecular defects have been identified in the LDL receptor (LDLR) and few specific mutations in the apolipoprotein B (APOB) gene resulting in familial hypercholesterolaemia and familial defective apoB-100 respectively. To estimate the respective contribution of LDLR, APOB and other gene defects in this disease, we studied 33 well characterised French families diagnosed over at least three generations with ADH through the candidate gene approach.

View Article and Find Full Text PDF

Autosomal dominant hypercholesterolemia (ADH), one of the most frequent hereditary disorders, is characterized by an isolated elevation of LDL particles that leads to premature mortality from cardiovascular complications. It is generally assumed that mutations in the LDLR and APOB genes account for ADH. We identified one large French pedigree (HC2) and 12 additional white families with ADH in which we excluded linkage to the LDLR and APOB, implicating a new locus we named "FH3.

View Article and Find Full Text PDF