Purpose: Understanding how spinal orientation affects injury outcome is essential to understand lumbar injury biomechanics associated with high-rate vertical loading.
Methods: Whole-column human lumbar spines (T12-L5) were dynamically loaded using a drop tower to simulate peak axial forces associated with high-speed aircraft ejections and helicopter crashes. Spines were allowed to maintain natural lordotic curvature for loading, resulting in a range of orientations.
Body armor is used to protect the human from penetrating injuries, however, in the process of defeating a projectile, the back face of the armor can deform into the wearer at extremely high rates. This deformation can cause a variety of soft and hard tissue injuries. Finite element modeling (FEM) represents one of the best tools to predict injuries from this high-rate compression mechanism.
View Article and Find Full Text PDFAviation and space medicine face many common musculoskeletal challenges that manifest in crew of rotary-wing aircraft (RWA), high-performance jet aircraft (HPJA), and spacecraft. Furthermore, many astronauts are former pilots of RWA or HPJA. Flight crew are exposed to recurrent musculoskeletal risk relating to the extreme environments in which they operate, including high-gravitational force equivalents (g-forces), altered gravitational vectors, vibratory loading, and interaction with equipment.
View Article and Find Full Text PDFCalculation of peripheral capillary oxygen saturation [Formula: see text] levels in humans is often made with a pulse oximeter, using photoplethysmography (PPG) waveforms. However, measurements of PPG waveforms are susceptible to motion noise due to subject and sensor movements. In this study, we compare two [Formula: see text]-level calculation techniques, and measure the effect of pre-filtering by a heart-rate tuned comb peak filter on their performance.
View Article and Find Full Text PDFThe negative effects of hypoxia on human cognitive function have been well documented. In this study we assess the correlation of performance in the SynWin cognitive Multi-Task Battery (MTB) and the onset of hypoxia and describe the use of cognitive assessment scores for real-time hypoxia detection. We performed a correlation analysis between MTB scores (Arithmetic, Memory, Audio Monitoring, Video Monitoring tasks) and blood oxygen saturation levels to discover if the scores are good candidates to detect hypoxia.
View Article and Find Full Text PDF