Mammalian translation elongation factors eEF1A1 and eEF1A2 are 92% homologous isoforms whose mutually exclusive tissue-specific expression is regulated during development. The isoforms have similar translation functionality, but show differences in spatial organization and participation in various processes, such as oncogenesis and virus reproduction. The differences may be due to their ability to interact with isoform-specific partner proteins.
View Article and Find Full Text PDFThe eEF1 family of mammalian translation elongation factors is comprised of the two variants of eEF1A (eEF1A1 and eEF1A2), and the eEF1B complex. The latter consists of eEF1Bα, eEF1Bβ, and eEF1Bγ subunits. The two eEF1A variants have similar translation activity but may differ with respect to their secondary, "moonlighting" functions.
View Article and Find Full Text PDFProtein synthesis in eukaryotic cell is spatially and structurally compartmentalized that ensures high efficiency of this process. One of the distinctive features of higher eukaryotes is the existence of stable multi-protein complexes of aminoacyl-tRNA synthetases and translation elongation factors. Here, we report a quaternary organization of the human guanine-nucleotide exchange factor (GEF) complex, eEF1B, comprising α, β and γ subunits that specifically associate into a heterotrimeric form eEF1B(αβγ)3.
View Article and Find Full Text PDFFront Mol Biosci
April 2020
The human translation machinery includes three types of supramolecular complexes involved in elongation of the polypeptide chain: the ribosome, complex of elongation factors eEF1B and multienzyme aminoacyl-tRNA synthetase complex. Of the above, eEF1B is the least investigated assembly. Recently, a number of studies provided some insights into the structure of different eEF1B subunits and changes in their expression in cancer and other diseases.
View Article and Find Full Text PDFTranslation elongation factor 1Bβ (eEF1Bβ) is a metazoan-specific protein involved into the macromolecular eEF1B complex, containing also eEF1Bα and eEF1Bγ subunits. Both eEF1Bα and eEF1Bβ ensure the guanine nucleotide exchange on eEF1A while eEF1Bγ is thought to have a structural role. The structures of the eEF1Bβ catalytic C-terminal domain and neighboring central acidic region are known while the structure of the protein-binding N-terminal domain remains unidentified which prevents clear understanding of architecture of the eEF1B complex.
View Article and Find Full Text PDF