Publications by authors named "B S Mohan"

Submerged plants can thrive entirely underwater, playing a crucial role in maintaining water quality, supporting aquatic organisms, and enhancing sediment stability. However, they face multiple challenges, including reduced light availability, fluctuating water conditions, and limited nutrient access. Despite these stresses, submerged plants demonstrate remarkable resilience through physiological and biochemical adaptations.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) are highly valued for their electronic and optical capabilities in food sample analysis. Implementing MOF-based sensors is crucial for public health safety. This review centers on electrochemiluminescence (ECL) MOFs for monitoring food samples, highlighting signal changes from combining MOFs with Ru(bpy), TPrA, nanomaterials, and biomolecules.

View Article and Find Full Text PDF

Perioperative management of antiplatelet therapy involves a delicate balancing of the risk of periprocedural blood loss with the cardiovascular and thrombotic risk to the patient. Due to the unique nature of neurosurgery, perioperative bleeding may have devastating consequences and cause major morbidity and mortality. The recommendation to discontinue aspirin prior to major neurosurgical procedures rests upon conventional practice, expert consensus with priority given to avoidance of any major bleed.

View Article and Find Full Text PDF

Porous materials have been gaining popularity in catalysis applications, solving the current ecological challenges. Metal-organic frameworks (MOFs) are especially noteworthy for their high surface areas and customizable chemistry, giving them a wide range of potential applications in catalysis remediation. The review study delves into the various applications of MOFs in catalysis and provides a comprehensive summary.

View Article and Find Full Text PDF

Background: In the age of modern medicine, CRISPR-Cas system-aided phage engineering has emerged as a major game changer for developing personalized antibacterial treatments. Modifying genomic DNA at a specific location leads to the inactivation of target genes, the acquisition of novel genetic features, and the correction of lethal gene mutations. Phages can be modified to precisely detect and control bacteria because of the vast possibilities of CRISPR-Cas-based genetic engineering.

View Article and Find Full Text PDF