Protein coding features can emerge de novo in non coding transcripts, resulting in emergence of new protein coding genes. Studies across many species show that a large fraction of evolutionarily novel non-coding RNAs have an antisense overlap with protein coding genes. The open reading frames (ORFs) in these antisense RNAs could also overlap with existing ORFs.
View Article and Find Full Text PDFFor protein coding genes to emerge de novo from a non-genic DNA, the DNA sequence must gain an open reading frame (ORF) and the ability to be transcribed. The newborn de novo gene can further evolve to accumulate changes in its sequence. Consequently, it can also elongate or shrink with time.
View Article and Find Full Text PDFNew protein coding genes can emerge from genomic regions that previously did not contain any genes, via a process called de novo gene emergence. To synthesize a protein, DNA must be transcribed as well as translated. Both processes need certain DNA sequence features.
View Article and Find Full Text PDFChaperones facilitate the folding of other ("client") proteins and can thus affect the adaptive evolution of these clients. Specifically, chaperones affect the phenotype of proteins via two opposing mechanisms. On the one hand, they can buffer the effects of mutations in proteins and thus help preserve an ancestral, premutation phenotype.
View Article and Find Full Text PDFChaperones are proteins that help other proteins fold. They also affect the adaptive evolution of their client proteins by buffering the effect of deleterious mutations and increasing the genetic diversity of evolving proteins. We study how the bacterial chaperone GroE (GroEL+GroES) affects the evolution of green fluorescent protein (GFP).
View Article and Find Full Text PDF