The manipulation of biological materials at cellular level constitutes a sine and provocative research area regarding the development of micro/nano-medicine. In this study, we report on 3D superparamagnetic microcage-like structures that, in conjunction with an externally applied static magnetic field, were highly efficient in entrapping cells. The microcage-like structures were fabricated using Laser Direct Writing via Two-Photon Polymerization (LDW via TPP) of IP-L780 biocompatible photopolymer/iron oxide superparamagnetic nanoparticles (MNPs) composite.
View Article and Find Full Text PDFIn this review, we present the most recent and relevant research that has been done regarding the fabrication of 3D micro/nanostructures for tissue engineering applications. First, we make an overview of 3D micro/nanostructures that act as backbone constructs where the seeded cells can attach, proliferate and differentiate towards the formation of new tissue. Then, we describe the fabrication of 3D micro/nanostructures that are able to control the cellular processes leading to faster tissue regeneration, by actuation using topographical, mechanical, chemical, electric or magnetic stimuli.
View Article and Find Full Text PDFThe fabrication of complex, reproducible, and accurate micro-and nanostructured interfaces that impede the interaction between material's surface and different cell types represents an important objective in the development of medical devices. This can be achieved by topographical means such as dual-scale structures, mainly represented by microstructures with surface nanopatterning. Fabrication via laser irradiation of materials seems promising.
View Article and Find Full Text PDFWe report the design and fabrication by laser direct writing via two photons polymerization of innovative hierarchical structures with cell-repellency capability. The structures were designed in the shape of "mushrooms", consisting of an underside (mushroom's leg) acting as a support structure and a top side (mushroom's hat) decorated with micro- and nanostructures. A ripple-like pattern was created on top of the mushrooms, over length scales ranging from several µm (microstructured mushroom-like pillars, MMP) to tens of nm (nanostructured mushroom-like pillars, NMP).
View Article and Find Full Text PDFWe demonstrate a proof of concept for magnetically-driven 2D cells organization on superparamagnetic micromagnets fabricated by laser direct writing via two photon polymerization (LDW via TPP) of a photopolymerizable superparamagnetic composite. The composite consisted of a commercially available, biocompatible photopolymer (Ormocore) mixed with 4 mg/mL superparamagnetic nanoparticles (MNPs). The micromagnets were designed in the shape of squares with 70 µm lateral dimension.
View Article and Find Full Text PDF