Can the transcriptomic profile of a neuron predict its physiological properties? Using a Patch-seq dataset of the primary visual cortex, we addressed this question by focusing on spike rate adaptation (SRA), a well-known phenomenon that depends on small conductance calcium (Ca)-dependent potassium (SK) channels. We first show that in parvalbumin-expressing (PV) and somatostatin-expressing (SST) interneurons (INs), expression levels of genes encoding the ion channels underlying action potential generation are correlated with the half-width (HW) of spikes. Surprisingly, the SK encoding gene is not correlated with the degree of SRA (dAdap).
View Article and Find Full Text PDFFront Cell Neurosci
July 2024
GABAergic interneurons (INs) in the mammalian forebrain represent a diverse population of cells that provide specialized forms of local inhibition to regulate neural circuit activity. Over the last few decades, the development of a palette of genetic tools along with the generation of single-cell transcriptomic data has begun to reveal the molecular basis of IN diversity, thereby providing deep insights into how different IN subtypes function in the forebrain. In this review, we outline the emerging picture of cortical and hippocampal IN speciation as defined by transcriptomics and developmental origin and summarize the genetic strategies that have been utilized to target specific IN subtypes, along with the technical considerations inherent to each approach.
View Article and Find Full Text PDFCortical GABAergic interneurons (INs) represent a diverse population of mainly locally projecting cells that provide specialized forms of inhibition to pyramidal neurons and other INs. Most recent work on INs has focused on subtypes distinguished by expression of Parvalbumin (PV), Somatostatin (SST), or Vasoactive Intestinal Peptide (VIP). However, a fourth group that includes neurogliaform cells (NGFCs) has been less well characterized due to a lack of genetic tools.
View Article and Find Full Text PDFThe cardinal classes are a useful simplification of cortical interneuron diversity, but such broad subgroupings gloss over the molecular, morphological, and circuit specificity of interneuron subtypes, most notably among the somatostatin interneuron class. Although there is evidence that this diversity is functionally relevant, the circuit implications of this diversity are unknown. To address this knowledge gap, we designed a series of genetic strategies to target the breadth of somatostatin interneuron subtypes and found that each subtype possesses a unique laminar organization and stereotyped axonal projection pattern.
View Article and Find Full Text PDF