Motivation: High-throughput time-lapse imaging is a fundamental tool for efficient living cell profiling at single-cell resolution. Label-free phase-contrast video microscopy enables noninvasive, nontoxic, and long-term imaging. The tradeoff between speed and throughput, however, implies that despite the state-of-the-art autofocusing algorithms, out-of-focus cells are unavoidable due to the migratory nature of immune cells (velocities >10 μm/min).
View Article and Find Full Text PDFReliable large-scale cell detection and segmentation is the fundamental first step to understanding biological processes in the brain. The ability to phenotype cells at scale can accelerate preclinical drug evaluation and system-level brain histology studies. The impressive advances in deep learning offer a practical solution to cell image detection and segmentation.
View Article and Find Full Text PDFDeep learning approaches are state-of-the-art for semantic segmentation of medical images, but unlike many deep learning applications, medical segmentation is characterized by small amounts of annotated training data. Thus, while mainstream deep learning approaches focus on performance in domains with large training sets, researchers in the medical imaging field must apply new methods in creative ways to meet the more constrained requirements of medical datasets. We propose a framework for incrementally fine-tuning a multi-class segmentation of a high-resolution multiplex (multi-channel) immuno-flourescence image of a rat brain section, using a minimal amount of labelling from a human expert.
View Article and Find Full Text PDF