Publications by authors named "B Royall"

Spectral filtering of resonance fluorescence is widely employed to improve single photon purity and indistinguishability by removing unwanted backgrounds. For filter bandwidths approaching the emitter linewidth, complex behavior is predicted due to preferential transmission of components with differing photon statistics. We probe this regime using a Purcell-enhanced quantum dot in both weak and strong excitation limits, finding excellent agreement with an extended sensor theory model.

View Article and Find Full Text PDF

Coherent scattering of light by a single quantum emitter is a fundamental process at the heart of many proposed quantum technologies. Unlike atomic systems, solid-state emitters couple to their host lattice by phonons. Using a quantum dot in an optical nanocavity, we resolve these interactions in both time and frequency domains, going beyond the atomic picture to develop a comprehensive model of light scattering from solid-state emitters.

View Article and Find Full Text PDF

A strong optical nonlinearity arises when coherent light is scattered by a semiconductor quantum dot coupled to a nanophotonic waveguide. We exploit the Fano effect in such a waveguide to control the phase of the quantum interference underpinning the nonlinearity, experimentally demonstrating a tunable quantum optical filter which converts a coherent input state into either a bunched or an antibunched nonclassical output state. We show theoretically that the generation of nonclassical light is predicated on the formation of a two-photon bound state due to the interaction of the input coherent state with the quantum dot.

View Article and Find Full Text PDF

Using a sub-millimeter exciton-polariton waveguide suitable for integrated photonics, we experimentally demonstrate nonlinear modulation of pico-Joule pulses at the same time as amplification sufficient to compensate the system losses. By comparison with a numerical model we explain the observed interplay of gain and nonlinearity as amplification of the interacting polariton field by stimulated scattering from an incoherent continuous-wave reservoir that is depleted by the pulses. This combination of gain and giant ultrafast nonlinearity operating on picosecond pulses has the potential to open up new directions in low-power all-optical information processing and nonlinear photonic simulation of conservative and driven-dissipative systems.

View Article and Find Full Text PDF

We demonstrate the generation of a spatiotemporal optical continuum in a highly nonlinear exciton-polariton waveguide using extremely low excitation powers (2-ps, 100-W peak power pulses) and a submillimeter device suitable for integrated optics applications. We observe contributions from several mechanisms over a range of powers and demonstrate that the strong light-matter coupling significantly modifies the physics involved in all of them. The experimental data are well understood in combination with theoretical modeling.

View Article and Find Full Text PDF