Publications by authors named "B Rothhut"

Article Synopsis
  • * RNA profiling revealed that after injury, these cells activate specific signaling pathways (STAT3 and ERK/MAPK) and drastically upregulate 510 genes while downregulating others related to cilia formation.
  • * The study suggests that the interaction between microglial cells and the Osmr/Oncostatin pathway influences the differentiation of ependymal cells towards astrocytes after spinal cord injuries.
View Article and Find Full Text PDF

Glioblastomas (GBM) are high-grade brain tumors, containing cells with distinct phenotypes and tumorigenic potentials, notably aggressive and treatment-resistant multipotent glioblastoma stem cells (GSC). The molecular mechanisms controlling GSC plasticity and growth have only partly been elucidated. Contact with endothelial cells and the Notch1 pathway control GSC proliferation and fate.

View Article and Find Full Text PDF

Diffuse low grade gliomas (DLGG, grade II gliomas) are slowly-growing brain tumors that often progress into high grade gliomas. Most tumors have a missense mutation for IDH1 combined with 1p19q codeletion in oligodendrogliomas or ATRX/TP53 mutations in astrocytomas. The phenotype of tumoral cells, their environment and the pathways activated in these tumors are still ill-defined and are mainly based on genomics and transcriptomics analysis.

View Article and Find Full Text PDF

Glioblastomas are devastating and extensively vascularized brain tumors from which glioblastoma stem-like cells (GSCs) have been isolated by many groups. These cells have a high tumorigenic potential and the capacity to generate heterogeneous phenotypes. There is growing evidence to support the possibility that these cells are derived from the accumulation of mutations in adult neural stem cells (NSCs) as well as in oligodendrocyte progenitors.

View Article and Find Full Text PDF

Asymmetric division (AD) is a fundamental mechanism whereby unequal inheritance of various cellular compounds during mitosis generates unequal fate in the two daughter cells. Unequal repartitions of transcription factors, receptors as well as mRNA have been abundantly described in AD. In contrast, the involvement of intermediate filaments in this process is still largely unknown.

View Article and Find Full Text PDF